3.設(shè)2階方矩陣A=$(\begin{array}{l}{a}&\\{c}&l5jysml\end{array})$,則矩陣A所對應(yīng)的矩陣變換為:$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{a}&\\{c}&zfi0g8v\end{array})$$(\begin{array}{l}{x′}\\{y′}\end{array})$,其意義是把點P(x,y)變換為點Q(x′,y′),矩陣A叫做變換矩陣.
(1)當(dāng)變換矩陣A1=$(\begin{array}{l}{1}&{2}\\{2}&{1}\end{array})$時,點P1(-1,1),P2(-3,1)經(jīng)矩陣變換后得到點分別是Q1,Q2,求過點Q1,Q2的直線的點向式方程.
(2)當(dāng)變換矩陣A2=$(\begin{array}{l}{1}&{3}\\{8}&{-1}\end{array})$時,若直線上的任意點P(x,y)經(jīng)矩陣變換后得到的點Q仍在該直線上,求直線方程.

分析 (1)$({\begin{array}{l}{-1}\\ 1\end{array}})=({\begin{array}{l}1&2\\ 2&1\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+2{y^'}}\\{2{x^'}+{y^'}}\end{array}})$,由$\left\{{\begin{array}{l}{{x^'}+2{y^'}=-1}\\{2{x^'}+{y^'}=1}\end{array}⇒\left\{{\begin{array}{l}{{x^'}=1}\\{{y^'}=-1}\end{array}}\right.}\right.$,求得Q1點坐標(biāo),根據(jù)矩陣的變換,求得Q2坐標(biāo),求得$\overrightarrow{{Q}_{1}{Q}_{2}}$=($\frac{2}{3}$,-$\frac{4}{3}$),根據(jù)點方向式,求得過點Q1,Q2的直線的點方向式方程;
(2)根據(jù)矩陣的坐標(biāo)變換,求得$\left\{{\begin{array}{l}{x={x^'}+3{y^'}}\\{y=8{x^'}-{y^'}}\end{array}}\right.⇒\left\{{\begin{array}{l}{{x^'}=\frac{x+3y}{25}}\\{{y^'}=\frac{8x-y}{25}}\end{array}}\right.$,將x′和y′代入直線l1方程,由l1與l2重合,求得a和b的關(guān)系,由Dx=0,求得c的值,Dy=0,求得直線方程.

解答 解:(1)$({\begin{array}{l}{-1}\\ 1\end{array}})=({\begin{array}{l}1&2\\ 2&1\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+2{y^'}}\\{2{x^'}+{y^'}}\end{array}})$,
則$\left\{{\begin{array}{l}{{x^'}+2{y^'}=-1}\\{2{x^'}+{y^'}=1}\end{array}⇒\left\{{\begin{array}{l}{{x^'}=1}\\{{y^'}=-1}\end{array}}\right.}\right.$,
∴點Q1(1,-1).
同理點${Q_2}(\frac{5}{3},-\frac{7}{3})$.$\overrightarrow{{Q}_{1}{Q}_{2}}$=($\frac{2}{3}$,-$\frac{4}{3}$),
直線Q1Q2的點向式為 $\frac{x-1}{{\frac{2}{3}}}=\frac{y+1}{{-\frac{4}{3}}}$,即$\frac{x-1}{1}=\frac{y+1}{-2}$.
(2)$({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}1&3\\ 8&{-1}\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+3{y^'}}\\{8{x^'}-{y^'}}\end{array}})$,
$\left\{{\begin{array}{l}{x={x^'}+3{y^'}}\\{y=8{x^'}-{y^'}}\end{array}}\right.⇒\left\{{\begin{array}{l}{{x^'}=\frac{x+3y}{25}}\\{{y^'}=\frac{8x-y}{25}}\end{array}}\right.$.
設(shè)l1:ax+by+c=0(a,b不全為0)${l_2}:a\frac{x+3y}{25}+b\frac{8x-y}{25}+c=0$,
即  (a+8b)x+(3a-b)y+25c=0
由題知l1與l2重合得$D=|{\begin{array}{l}a&b\\{a+8b}&{3a-b}\end{array}}|=3{a^2}-2ab-8{b^2}=0$,
∴a=2b或$a=-\frac{4}{3}b$,
${D_x}=|{\begin{array}{l}{-c}&b\\{-25c}&{3a-b}\end{array}}|=0$,
得  c=0,Dy=$|\begin{array}{l}{a}&{-c}\\{a+8b}&{-25c}\end{array}|$=0,
∴2bx+by=0或   $(-\frac{4}{3}b)x+by=0$,
即  2x+y=0或4x-3y=0.

點評 本題考查矩陣變換問題,考查矩陣的求法,考查運算能力與轉(zhuǎn)換思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.關(guān)于x的方程ax2+2x+1=0(a∈R)的根組成集合A.
(1)若A中有且只有一個元素,求a的值及集合A;
(2)若A中至多有一個元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.方程|x2-2x|=a2+1(a>0)的解的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}{x≤1}\\{x-y+1≥0}\\{x+y-1≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+3y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=ax2+ax-1對?x∈R都有f(x)<0恒成立,則實數(shù)a的取值范圍是( 。
A.-4<a≤0B.a<-4C.-4<a<0D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{-1},x≤a}\\{{x}^{-2},x>a}\end{array}\right.$,其中a≠0,若存在實數(shù)b,使得函數(shù)g(x)=f(x)-b有兩個零點,則a的取值范圍是( 。
A.(0,1)B.(-∞,0)∪(0,1)C.(-∞,0)∪(0,2)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若關(guān)于x、y的線性方程組$(\begin{array}{l}{m}&{1}\\{1}&{m}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{{m}^{2}}\\{m}\end{array})$有無窮多組解,則實數(shù)m的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.曲線y=ax2在點(1,a)處的切線與直線2x-y-6=0垂直,則a等于(  )
A.1B.$\frac{1}{4}$C.$-\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線xy=1的一個參數(shù)方程是( 。
A.$\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$B.$\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$
C.$\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$D.$\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊答案