分析 (1)$({\begin{array}{l}{-1}\\ 1\end{array}})=({\begin{array}{l}1&2\\ 2&1\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+2{y^'}}\\{2{x^'}+{y^'}}\end{array}})$,由$\left\{{\begin{array}{l}{{x^'}+2{y^'}=-1}\\{2{x^'}+{y^'}=1}\end{array}⇒\left\{{\begin{array}{l}{{x^'}=1}\\{{y^'}=-1}\end{array}}\right.}\right.$,求得Q1點坐標(biāo),根據(jù)矩陣的變換,求得Q2坐標(biāo),求得$\overrightarrow{{Q}_{1}{Q}_{2}}$=($\frac{2}{3}$,-$\frac{4}{3}$),根據(jù)點方向式,求得過點Q1,Q2的直線的點方向式方程;
(2)根據(jù)矩陣的坐標(biāo)變換,求得$\left\{{\begin{array}{l}{x={x^'}+3{y^'}}\\{y=8{x^'}-{y^'}}\end{array}}\right.⇒\left\{{\begin{array}{l}{{x^'}=\frac{x+3y}{25}}\\{{y^'}=\frac{8x-y}{25}}\end{array}}\right.$,將x′和y′代入直線l1方程,由l1與l2重合,求得a和b的關(guān)系,由Dx=0,求得c的值,Dy=0,求得直線方程.
解答 解:(1)$({\begin{array}{l}{-1}\\ 1\end{array}})=({\begin{array}{l}1&2\\ 2&1\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+2{y^'}}\\{2{x^'}+{y^'}}\end{array}})$,
則$\left\{{\begin{array}{l}{{x^'}+2{y^'}=-1}\\{2{x^'}+{y^'}=1}\end{array}⇒\left\{{\begin{array}{l}{{x^'}=1}\\{{y^'}=-1}\end{array}}\right.}\right.$,
∴點Q1(1,-1).
同理點${Q_2}(\frac{5}{3},-\frac{7}{3})$.$\overrightarrow{{Q}_{1}{Q}_{2}}$=($\frac{2}{3}$,-$\frac{4}{3}$),
直線Q1Q2的點向式為 $\frac{x-1}{{\frac{2}{3}}}=\frac{y+1}{{-\frac{4}{3}}}$,即$\frac{x-1}{1}=\frac{y+1}{-2}$.
(2)$({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}1&3\\ 8&{-1}\end{array}})({\begin{array}{l}{x^'}\\{{y^'}}\end{array}})=({\begin{array}{l}{{x^'}+3{y^'}}\\{8{x^'}-{y^'}}\end{array}})$,
$\left\{{\begin{array}{l}{x={x^'}+3{y^'}}\\{y=8{x^'}-{y^'}}\end{array}}\right.⇒\left\{{\begin{array}{l}{{x^'}=\frac{x+3y}{25}}\\{{y^'}=\frac{8x-y}{25}}\end{array}}\right.$.
設(shè)l1:ax+by+c=0(a,b不全為0)${l_2}:a\frac{x+3y}{25}+b\frac{8x-y}{25}+c=0$,
即 (a+8b)x+(3a-b)y+25c=0
由題知l1與l2重合得$D=|{\begin{array}{l}a&b\\{a+8b}&{3a-b}\end{array}}|=3{a^2}-2ab-8{b^2}=0$,
∴a=2b或$a=-\frac{4}{3}b$,
${D_x}=|{\begin{array}{l}{-c}&b\\{-25c}&{3a-b}\end{array}}|=0$,
得 c=0,Dy=$|\begin{array}{l}{a}&{-c}\\{a+8b}&{-25c}\end{array}|$=0,
∴2bx+by=0或 $(-\frac{4}{3}b)x+by=0$,
即 2x+y=0或4x-3y=0.
點評 本題考查矩陣變換問題,考查矩陣的求法,考查運算能力與轉(zhuǎn)換思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4<a≤0 | B. | a<-4 | C. | -4<a<0 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-∞,0)∪(0,1) | C. | (-∞,0)∪(0,2) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{4}$ | C. | $-\frac{1}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$ | B. | $\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com