5.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a2=3,Sm-Sm-3=51(m是大于3的自然數(shù)),Sm=100,則m=10.

分析 由等差數(shù)列的性質(zhì)得am-1=17,結(jié)合a2=3,Sm=100,利用等差數(shù)列的性質(zhì)及求和公式即可求得m的值.

解答 解:∵Sm-Sm-3=51(m>3),
∴am+am-1+am-2=51,又?jǐn)?shù)列{an}為等差數(shù)列,
∴3am-1=51,∴an-1=17.
又a2=3,Sm=100,
Sm=$\frac{{a}_{1}+{a}_{m}}{2}×m$=$\frac{{a}_{2}+{a}_{m-1}}{2}×m$=100.
∴m=10.
故答案為10.

點(diǎn)評(píng) 本題考查數(shù)列的求和,突出等差等差數(shù)列的性質(zhì),考查觀察與利用差等差數(shù)列的性質(zhì)分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=(x+a)ex在x=0處的切線與直線x+y+1=0垂直,則a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足3an+1+anan+1=3an,a1=3.
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)設(shè)bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題正確的是(2)(5)
(1)若$\overrightarrow{a}$≠$\overrightarrow{o}$,$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{a}•\overrightarrow{c}$;
(2)對(duì)任一向量$\overrightarrow{a}$,有$\overrightarrow{{a}^{2}}$=|$\overrightarrow{a}$|2;
(3)若$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{0}$,則,$\overrightarrow{a}$與$\overrightarrow$中至少有一個(gè)為$\overrightarrow{0}$;
(4)|$\overrightarrow{a}•\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|;
(5)$\overrightarrow{a}$與$\overrightarrow$是兩個(gè)單位向量,則$\overrightarrow{{a}^{2}}$=$\overrightarrow{^{2}}$;
(6)若|$\overrightarrow{a}+\overrightarrow$=|$\overrightarrow{a}$|+|$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$;
(7)($\overrightarrow{a}•\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow•\overrightarrow{c}$)對(duì)任意向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上周期為4的偶函數(shù),若f(x)在區(qū)間[-2,0]上單凋遞減,且f(-1)=0,則f(x)在區(qū)間[0,10]內(nèi)的零點(diǎn)個(gè)數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=log5(2x+1)的導(dǎo)數(shù)是$\frac{2}{(2x+1)ln5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(ax+$\frac{1}{ax}$)4(x-2)2展開式的常數(shù)項(xiàng)為25,則負(fù)實(shí)數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列各式的值:
(1)(sin$\frac{5π}{12}$+cos$\frac{5π}{12}$)(sin$\frac{5π}{12}$-cos$\frac{5π}{12}$)
(2)cos4$\frac{α}{2}$-sin4$\frac{α}{2}$
(3)$\frac{1}{1-tanα}$-$\frac{1}{1+tanα}$
(4)1+2cos2θ-cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前項(xiàng)的和為Sn,證明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案