15.化簡(jiǎn):$\frac{si{n}^{2}(α+π)cos(-α+π)}{tan(α+π)tan(α+2π)co{s}^{2}(-α-π)}$.

分析 利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn).

解答 解:原式=$\frac{-si{n}^{2}αcosα}{tanαtanαco{s}^{2}α}$=-cosα.

點(diǎn)評(píng) 本題考查了三角函數(shù)式的化簡(jiǎn);利用了三角函數(shù)的誘導(dǎo)公式:奇變偶不變,符號(hào)看象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得到K2的觀測(cè)值k=12.097,則其兩個(gè)變量間有關(guān)系的可能性為( 。
A.0B.95%C.90%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中為假命題是(  )
A.$?{x_0}∈R.{log_{\frac{1}{2}}}{x_0}$=-1B.$?x∈R{(\frac{1}{2})^x}$>0
C.?x∈R  x2+2x+3>0D.?x0∈R.cosx0=-$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí)f(x)=1-x2,函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(2)=0,當(dāng)x>0時(shí),有$\frac{xf'(x)-f(x)}{x^2}<0$成立,則不等式f(x)>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{x≤4}\end{array}\right.$,所表示的平面區(qū)域的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.小花老師從甲、乙、丙、丁共計(jì)4名學(xué)生中選出2名分別擔(dān)任班長(zhǎng)和學(xué)習(xí)委員,她有( 。┓N備選方案.
A.4B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.觀察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所發(fā)現(xiàn)的規(guī)律得出22015的末位數(shù)字是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求面積為10π,且經(jīng)過兩圓x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0的交點(diǎn)的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案