13.計(jì)算
(1)log225•log34•log59        
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

分析 利用對數(shù)運(yùn)算法則求解即可.

解答 解:(1)log225•log34•log59=8log25•log32•log53=8.
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$=$\frac{5}{2}$lg2-lg7-2lg2+$\frac{1}{2}$(lg5+2lg7)=$\frac{1}{2}$(lg2+lg5)=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查對數(shù)運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項(xiàng)數(shù)列{an}滿足:a1=1,an2+2a2n+1≤3anan+1
(1)求證:$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)設(shè)bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$,求證:b1+b2+b3+…+bn<2n+1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)=2sin(ωx),其中ω>0,若函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{2π}{3}$]上是增函數(shù),則ω的取值范圍是(0,$\frac{3}{4}$ ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在正方形紙片ABCD中,AC與BD相交于點(diǎn)O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則在以A(B)、C、D、O為頂點(diǎn)的四面體中,二面角O-AD-C的余弦值為( 。
A.$\frac{\sqrt{6}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義一種運(yùn)算S=a?b,在如圖所示的框圖所表達(dá)的算法中揭示了這種運(yùn)算“?”的含義,那么按照運(yùn)算“?”的含義,S=tan60°?tan30°+cos60°?cos30°=( 。
A.$\frac{{3+\sqrt{3}}}{2}$B.$\frac{{4+\sqrt{3}}}{4}$C.$\frac{{19\sqrt{3}}}{12}$D.$\frac{{11\sqrt{3}}}{6}+\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知?x∈(0,+∞),[(m-1)x-1](x2-mx-1)≥0恒成立,則m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知一個(gè)正方體的所有棱與空間的某一平面成角為α,則cosα的值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,一$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則(  )
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長度得到
C.函數(shù)f(x)的圖象關(guān)于直線x=一$\frac{π}{12}$對稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=1+a•\frac{1}{2^x}+\frac{1}{4^x}$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域;
(2)若對任意x∈[0,+∞),總有f(x)<3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案