13.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=tcosφ}\\{y=-1+tsinφ}\end{array}\right.$ (t為參數(shù)),以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin(θ+$\frac{π}{3}$)
(I)求直線l和曲線C的普通方程;
(Ⅱ)在直角坐標(biāo)系中,過點(diǎn)B(0,1)作直線l的垂線,垂足為H,試以φ為參數(shù),求動點(diǎn)H軌跡的參數(shù)方程,并指出軌跡表示的曲線.

分析 (I)根據(jù)直線的參數(shù)方程得出直線l上的定點(diǎn),和斜率,得出普通方程,將曲線C的極坐標(biāo)方程兩邊同乘ρ展開得出曲線C的普通方程;
(II)求出l的垂線方程,解方程組得出H的參數(shù)方程.化成普通方程判斷曲線類型.

解答 解:(I)直線l的普通方程為$\frac{x}{cosφ}$=$\frac{y+1}{sinφ}$,即y=tanφ•x-1.
∵ρ=2sin(θ+$\frac{π}{3}$),∴ρ2=ρsinθ+$\sqrt{3}$ρcosθ,
∴曲線C的普通方程為x2+y2-$\sqrt{3}$x-y=0.
(II)由直線l的參數(shù)方程可知直線l的斜率為tanφ,
∴過點(diǎn)B(0,1)且與直線l垂直的直線方程為y=-$\frac{1}{tanφ}$x+1.
聯(lián)立方程組$\left\{\begin{array}{l}{y=tanφ•x-1}\\{y=-\frac{1}{tanφ}•x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2tanφ}{1+ta{n}^{2}φ}}\\{y=\frac{ta{n}^{2}φ-1}{1+ta{n}^{2}φ}}\end{array}\right.$.
∴動點(diǎn)H軌跡的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{2tanφ}{1+ta{n}^{2}φ}}\\{y=\frac{ta{n}^{2}φ-1}{1+ta{n}^{2}φ}}\end{array}\right.$(φ是參數(shù)).
化成普通方程得x2+y2=1.
∴H點(diǎn)的軌跡表示單位圓.

點(diǎn)評 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,參數(shù)方程的求解,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,一豎立在水平對面上的圓錐形物體的母線長為4m,一只小蟲從圓錐的底面圓上的點(diǎn)P出發(fā),繞圓錐表面爬行一周后回到點(diǎn)P處,則該小蟲爬行的最短路程為$4\sqrt{3}m$,則圓錐底面圓的半徑等于(  )
A.1mB.$\frac{3}{2}m$C.$\frac{4}{3}m$D.2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xex-alnx,曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(Ⅰ)求f(x)=a(x-1)(ex-a)的單調(diào)區(qū)間;
(Ⅱ)證明:b≤e時,f(x)≥b(x2-2x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的圖象向右平移$\frac{2π}{3}$個單位后與原圖象重合,則ω的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\frac{x-1}{x-3}$,g(x)=$\frac{x-3}{\sqrt{x-1}}$,則f(x)•g(x)=$\sqrt{x-1}$,其中x>1且x≠3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足(1+i)z=1-i(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn),G分別是線段DC,D1D和D1B上的動點(diǎn),給出下列結(jié)論:
①對于任意給定的點(diǎn)E,存在點(diǎn)F,使得AF⊥A1E;
②對于任意給定的點(diǎn)F,存在點(diǎn)E,使得AF⊥A1E;
③對于任意給定的點(diǎn)G,存在點(diǎn)F,使得AF⊥B1G;
④對于任意給定的點(diǎn)F,存在點(diǎn)G,使得AF⊥B1G.
其中正確結(jié)論的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面內(nèi)兩個不共線的向量,$\overrightarrow{a}$=x$\overrightarrow{e}$1-3$\overrightarrow{e}$2(x∈R),$\overrightarrow$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2.若$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)隨機(jī)變量X~N(2,32),若P(X≤0)=0.1,則P(2≤X<4)=( 。
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

同步練習(xí)冊答案