18.在△ABC中,內(nèi)角A,B,C所對的邊長分別為a,b,c,若向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$+cos(A+B).
(1)求∠C;
(2)若c=3,b=$\sqrt{3}$a,求△ABC的面積S.

分析 (1)由條件利用兩個向量的數(shù)量積的公式求得sin(C+$\frac{π}{6}$)的值,可得C的值.
(2)由條件利用余弦定理求得a的值,可得△ABC的面積S.

解答 解:(1)由題意可得 $\overrightarrow m•\overrightarrow n=\sqrt{3}sinAcosB+\sqrt{3}cosAsinB=\sqrt{3}+cos(A+B)$,∴$\sqrt{3}sinC+cosC=\sqrt{3}$,
∴$sin(C+\frac{π}{6})=\frac{{\sqrt{3}}}{2}$,∴$C=\frac{π}{6}$或$C=\frac{π}{2}$.
(2)當(dāng)$C=\frac{π}{6}$時,根據(jù)c=3,b=$\sqrt{3}$a,由余弦定理得c2=a2+b2-2ab•cosC,
求得 a=3,∴$S=\frac{1}{2}•\sqrt{3}{b^2}sin\frac{π}{6}=\frac{{9\sqrt{3}}}{4}$,
當(dāng)$C=\frac{π}{2}$時,由勾股定理得a=$\frac{3}{2}$,∴$S=\frac{1}{2}•\sqrt{3}{b^2}=\frac{{9\sqrt{3}}}{8}$,

點(diǎn)評 本題主要考查兩個向量的數(shù)量積的公式,余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.
常喝不常喝合計
肥胖2
不肥胖18
合計30
已知在這30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為$\frac{4}{15}$.
(1)請將上面的列聯(lián)表補(bǔ)充完整.
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-cb)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:$\lim_{x→1}\frac{{1-\sqrt{x}}}{{1-\root{3}{x}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.mn>0是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示橢圓的( 。l件.
A.充分不必要B.必要不充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式$\frac{2x}{x+1}≤1$的解集為(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=λ(x-2λ)(x+λ+3),g(x)=2x-2,滿足:?x∈R,f(x)<0或g(x)<0,則實(shí)數(shù)λ的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若兩條直線x+ay+3=0,(a-1)x+2y+a+1=0互相平行,則這兩條直線之間的距離為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某人從星期一到星期五收到信件數(shù)分別是10,6,8,9,7,則該組數(shù)據(jù)的方差s2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線l的方向向量為$\overrightarrow{u}$=(1,1,2),平面α的法向量為$\overrightarrow{n}$=(-3,3,-6),則( 。
A.l∥αB.l⊥αC.l?αD.l與α與斜交

查看答案和解析>>

同步練習(xí)冊答案