15.已知函數(shù)f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,則實數(shù) b的取值范圍是( 。
A.(-∞,$\frac{3}{2}$)B.(-∞,$\frac{9}{4}$)C.(-∞,3)D.(-∞,$\sqrt{2}$)

分析 求導函數(shù),確定函數(shù)的單調(diào)性,進而可得函數(shù)的最大值,故可求實數(shù)a的取值范圍.

解答 解:∵f(x)=f(x)=$\frac{lnx+(x-b)^{2}}{x}$,x>0,
∴f′(x)=$\frac{1+2x(x-b)-lnx-(x-b)^{2}}{{x}^{2}}$,
∴f(x)+xf′(x)=$\frac{lnx+(x-b)^{2}}{x}$+$\frac{1+2x(x-b)-lnx-(x-b)^{2}}{x}$=$\frac{1+2x(x-b)}{x}$,
∵存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
∴1+2x(x-b)>0
∴b<x+$\frac{1}{2x}$,
設(shè)g(x)=x+$\frac{1}{2x}$,
∴b<g(x)max
∴g′(x)=1-$\frac{1}{2{x}^{2}}$=$\frac{2{x}^{2}-1}{2{x}^{2}}$,
當g′(x)=0時,解的x=$\frac{\sqrt{2}}{2}$,
當g′(x)>0時,即$\frac{\sqrt{2}}{2}$<x≤2時,函數(shù)單調(diào)遞增,
當g′(x)<0時,即$\frac{1}{2}$≤x<2時,函數(shù)單調(diào)遞減,
∴當x=2時,函數(shù)g(x)取最大值,最大值為g(2)=2+$\frac{1}{4}$=$\frac{9}{4}$
∴b<$\frac{9}{4}$,
故選:B.

點評 本題考查導數(shù)知識的運用,考查恒成立問題,考查函數(shù)的最值,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖是函數(shù)y=f(x)的導函數(shù)f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(-2,1)上f(x)是增函數(shù)B.當x=4時,f(x)取極大值
C.在(1,3)上f(x)是減函數(shù)D.在(4,5)上f(x)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.等差數(shù)列{an}中,a1•a2015為方程x2-10x+21=0的兩根,則a2+a2014=( 。
A.10B.15C.20D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.試證數(shù)列49.4489.444889,…,$\underset{\underbrace{44…4}}{n}$$\underset{\underbrace{88…8}}{n-1}9$的每一項都是完全平方數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)Sn為數(shù)列{an}的前n項和,若Sn=8an-1,則$\frac{{a}_{5}}{{a}_{3}}$=$\frac{64}{49}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知2x=3y,則$\frac{x}{y}$=( 。
A.$\frac{lg2}{lg3}$B.$\frac{lg3}{lg2}$C.lg$\frac{2}{3}$D.lg$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若函數(shù)f(x)滿足f(logax)=$\frac{a}{{a}^{2}-1}$•(x-$\frac{1}{x}$)(其中a>0且a≠1).
(1)求函數(shù)f(x)的解析式,并判斷其奇偶性和單調(diào)性;
(2)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.不等式|x|$<\frac{2}{3}$的解集為( 。
A.B.(-∞,-$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)C.(-$\frac{2}{3}$,$\frac{2}{3}$)D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知Sn為數(shù)列{an}的前n項和,a1=3,2an=SnSn-1(n≥2).
(1)求證:{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)求{an}的通項公式;
(3)數(shù)列{an}中是否存在正整數(shù)k,使得不等式ak≥ak+1對任意不小于k的正整數(shù)都成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

查看答案和解析>>

同步練習冊答案