分析 根據(jù)正弦函數(shù)的對(duì)稱中心方程,求出函數(shù)的圖象的對(duì)稱中心即可.
解答 解:因?yàn)?x+$\frac{π}{4}$=kπ,k∈Z,所以x=$\frac{1}{5}$kπ-$\frac{π}{20}$,k∈Z,
所以函數(shù)y=sin(5x+$\frac{π}{4}$)的圖象的對(duì)稱中心:($\frac{1}{5}$kπ-$\frac{π}{20}$,0)k∈Z,
故答案為:($\frac{1}{5}$kπ-$\frac{π}{20}$,0)k∈Z.
點(diǎn)評(píng) 本題是基礎(chǔ)題,考查正弦函數(shù)的對(duì)稱性,能夠利用基本函數(shù)的性質(zhì)求解函數(shù)的有關(guān)性質(zhì),是高考常考題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=x-\frac{1}{x}$ | B. | f(x)=ex-1 | C. | $f(x)=x+\frac{4}{x}$ | D. | f(x)=tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ | B. | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1 | C. | x2+y2=1 | D. | $\frac{y^2}{4}-\frac{x^2}{2}=1$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com