16.如圖是偶函數(shù)y=f(x)的局部圖象,根據(jù)圖象所給信息,下列結(jié)論正確的是( 。
A.f(-2)-f(6)=0B.f(-2)-f(6)<0C.f(-2)+f(6)=0D.f(-2)-f(6)>0

分析 直接利用函數(shù)的圖象,結(jié)合函數(shù)的奇偶性,推出結(jié)果即可.

解答 解:由題意可知:f(2)<f(6).可得f(2)-f(6)<0
f(-2)=f(2),f(-6)=f(6),
∴f(-2)-f(6)<0.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)的奇偶性以及函數(shù)值的大小比較,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知α是第二象限角,且7α與2α的終邊相同,則α=144°+k•360°,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$,過點(diǎn)(-1,0)且斜率為1的直線l與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求弦|AB|的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=log2($\frac{x+b}{x-b}$),(b≠0).
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)解關(guān)于x的不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)$f(x)=\frac{x}{{({2x+1})({2x-a})}}$為奇函數(shù),則a=( 。
A.1B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=lg(ax2+2x+1).
(1)當(dāng)a=0時(shí),求f(x)的定義域;
(2)當(dāng)a=2時(shí)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{1}{x}$在區(qū)間[3,5]上值域?yàn)閇$\frac{1}{5}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},則A∪B=( 。
A.{-4,-3,0,2,3}B.{-3,-2,0,1,3}C.{-3,-1,0,1,2}D.{-4,-3,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\frac{1}{ln(x+1)}$的定義域?yàn)椋?1,0)∪(0,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案