3.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(e)+lnx,則f′(e)=( 。
A.1B.-1C.-e-1D.-e

分析 首先對等式兩邊求導(dǎo)得到關(guān)于f'(e)的等式解之.

解答 解:由關(guān)系式f(x)=2xf′(e)+lnx,兩邊求導(dǎo)得f'(x)=2f'(x)+$\frac{1}{x}$,令x=e得f'(e)=2f'(e)+e-1,所以f'(e)=-e-1;
故選:C.

點評 本題考查了求導(dǎo)公式的運用;關(guān)鍵是對已知等式兩邊求導(dǎo),得到關(guān)于f'(x)的等式,對x取e求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin75°=( 。
A.$\frac{\sqrt{6}-\sqrt{3}}{4}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}+\sqrt{3}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y滿足不等式組$\left\{\begin{array}{l}{x+y-4≥0}\\{x-y+2≥0}\\{2x-y-5≤0}\end{array}\right.$,則z=|x+2y-18|的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an},{bn}滿足:a1=2,b1=2015,且對任意的正整數(shù)n,an,an+1,bn和an+1,bn+1,bn均成等差數(shù)列
(1)證明:{an-bn}和{an+2bn}均成等比數(shù)列
(2)是否存在唯一的正整數(shù)c,使得an<c<bn恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.甲罐中有5個紅球,2個白球和3個黑球,乙罐中有4個紅球,3個白球和3個黑球.先從甲罐中隨機取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件.則下列結(jié)論中正確的是②④(寫出所有正確結(jié)論的編號).
①P(B)=$\frac{2}{5}$;
②P(B|A1)=$\frac{5}{11}$;
③事件B與事件A1相互獨立;
④A1,A2,A3是兩兩互斥的事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.i為虛數(shù)單位,復(fù)數(shù)$\frac{i}{1-2i}$=$-\frac{2}{5}+\frac{1}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在三棱錐S-ABC中,已知點D、E、F分別是棱AC、SA、SC的中點,求證:EF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若非零向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|=2|\overrightarrow b|$,則$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=x2-4x-5在[0,a]上的最大值當(dāng)a∈(0,4)時,最大值為-5;當(dāng)a∈[4,+∞)時,最大值為a2-4a-5.

查看答案和解析>>

同步練習(xí)冊答案