10.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(y,1),$\overrightarrow{{e}_{1}}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{{e}_{2}}$=2$\overrightarrow{a}$-$\overrightarrow$,且$\overrightarrow{{e}_{1}}$=2$\overrightarrow{{e}_{2}}$,求x,y的值.

分析 利用向量相等,列出方程組求解即可.

解答 解:向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(y,1),$\overrightarrow{{e}_{1}}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{{e}_{2}}$=2$\overrightarrow{a}$-$\overrightarrow$,且$\overrightarrow{{e}_{1}}$=2$\overrightarrow{{e}_{2}}$,
可得(1+2y,x+2)=(4-2y,4x-1),
可得1+2y=4-2y,x+2=4x-1,
解得y=$\frac{3}{4}$,x=1.

點(diǎn)評(píng) 本題考查向量共線,向量的坐標(biāo)運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,ABCD為正方形,且PD=AB=1,G為△ABC的重心,則PG與底面所成的角θ滿足( 。
A.θ=$\frac{π}{4}$B.cosθ=$\frac{2\sqrt{34}}{17}$C.tanθ=$\frac{2\sqrt{2}}{3}$D.sinθ=$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.先化簡(jiǎn),再求值:(2•a${\;}^{\frac{3}{4}}$•b${\;}^{-\frac{2}{3}}$)•(a${\;}^{-\frac{1}{2}}$•b${\;}^{-\frac{5}{3}}$)•(a${\;}^{\frac{3}{4}}$•b${\;}^{\frac{4}{3}}$),其中a=6,b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f(x)=$\left\{\begin{array}{l}{{4}^{lo{g}_{2}(x-8)}(x≥9)}\\{f[f(x+6)](x<9)}\end{array}\right.$,則f(5)的值為(  )
A.1B.5C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求函數(shù)y=$\sqrt{lo{g}_{3}[lo{g}_{\frac{1}{3}}(lo{g}_{2}x]}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{1}{2}$(|x+$\frac{1}{2}$tanα|+|x+tanα|+$\frac{3}{2}$tanα)(α為常數(shù),且-$\frac{π}{2}$<α<$\frac{π}{2}$),若?x∈R,都有f(x-3)≤f(x)恒成立,則實(shí)數(shù)α的取值范圍是-$\frac{π}{4}$≤α<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和${S_n}=\frac{3}{2}{n^2}+\frac{3}{2}n$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記${T_n}=\frac{{{a_n}•{a_{n+1}}}}{2^n}$,若對(duì)于一切的正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
(Ⅲ)設(shè)Bn為數(shù)列{bn}的前n項(xiàng)的和,其中${b_n}={2^{a_n}}$,若不等式$\frac{{{B_n}-t{b_n}}}{{{B_{n+1}}+t{b_{n+1}}}}<\frac{1}{16}$對(duì)任意的n∈N*恒成立,試求正實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知θ∈(0,2π)且$cos\frac{θ}{2}=\frac{1}{3}$,則tanθ的值為-$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案