19.我國(guó)南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分?jǐn)?shù)來(lái)表示數(shù)值的算法,其理論依據(jù)是:設(shè)實(shí)數(shù)x的不足近似值和過(guò)剩近似值分別為$\frac{a}$和$\fracqc6kwmw{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過(guò)剩近似值.我們知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過(guò)剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最簡(jiǎn)分?jǐn)?shù),那么第四次用“調(diào)日法”后可得π的近似分?jǐn)?shù)為$\frac{22}{7}$.

分析 利用“調(diào)日法”進(jìn)行計(jì)算,即可得出結(jié)論.

解答 解:第二次用“調(diào)日法”后得$\frac{47}{15}$是π的更為精確的過(guò)剩近似值,即$\frac{47}{15}$<π<$\frac{16}{5}$;
第三次用“調(diào)日法”后得$\frac{63}{20}$是π的更為精確的過(guò)剩近似值,即$\frac{47}{15}$<π<$\frac{63}{20}$,
第四次用“調(diào)日法”后得$\frac{22}{7}$是π的更為精確的過(guò)剩近似值,即$\frac{47}{15}$<π<$\frac{22}{7}$,
故答案為:$\frac{22}{7}$

點(diǎn)評(píng) 本題考查“調(diào)日法”,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若雙曲線經(jīng)過(guò)點(diǎn)$(6,\sqrt{3})$,且其漸近線方程為y=±$\frac{1}{3}$x,則此雙曲線的標(biāo)準(zhǔn)方程$\frac{x^2}{9}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2+2ax+2.
(1)若方程f(x)=0有兩不相等的正根,求a的取值范圍;
(2)若函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(2-x)成立,且對(duì)任意x∈(0,3)都有不等式f(x)<2x+m恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)g(a)是f(x)在x∈[-5,5]的最小值,求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在集合{a,b,c,d}上定義兩種運(yùn)算⊕和?如下:

那么d?(a⊕c)=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如果a、b、c、d∈R,則下列命題中正確的是( 。
A.若a>b,c>b,則a>cB.若a>-b,則c-a<c+b
C.若a>b,則ac2>bc2D.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在銳角△ABC中,A、B、C的對(duì)邊分別是a,b,c,(a2+c2-b2)tanB=$\frac{4\sqrt{2}}{3}$ac.
(1)求sinB的值;
(2)若b=2,S△ABC=$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.定義min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函數(shù)f(x)=min{|x-1|,-x2+11},若集合A={x|f(x)=m}中有4個(gè)元素,則實(shí)數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.三棱錐的三條棱兩兩互相垂直,長(zhǎng)度分別為6,4,4,則其頂點(diǎn)到底面的距離為( 。
A.$\frac{14}{3}$B.2$\sqrt{17}$C.$\frac{6\sqrt{22}}{11}$D.$\frac{2\sqrt{17}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案