16.若函數(shù)f(x)=$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$為奇函數(shù),則實(shí)數(shù)a=1或-1.

分析 函數(shù)f(x)=$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$為奇函數(shù),可得f(-x)=-f(x),代入計算,可得a的值.

解答 解:∵函數(shù)f(x)=$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$為奇函數(shù),
∴f(-x)=-f(x),
∴$\frac{a-1{0}^{-x}}{1+a•1{0}^{-x}}$=-$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$,
∴$\frac{a•1{0}^{x}-1}{1{0}^{x}+a}$=-$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$,
∴a=1或-1.
故答案為:1或-1.

點(diǎn)評 本題考查函數(shù)的奇偶性,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則當(dāng)CQ∈(0,$\frac{1}{2}$]∪{1}時,S為四邊形;當(dāng)CQ=$\frac{1}{2}$時S為等腰梯形;當(dāng)CQ=1時,S的面積為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.奇函數(shù)f(x)對任意x∈R都有f(x+2)=f(-x)成立,且f(1)=6,則f(2014)+f(2015)+f(2016)的值為(  )
A.-6B.0C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)對任意實(shí)數(shù)x,y,均有f(x+y)=f(x)+f(y)+1,若f(1)=2,則f(4)=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\left\{{\begin{array}{l}{|{x-1}|-2}&{({|x|≤1})}\\{-\frac{{{x^2}+2}}{{1+{x^2}}}}&{({|x|>1})}\end{array}}$,若f(a)=-$\frac{6}{5}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4x+2a+3,a∈R.
(1)若函數(shù)f(x)在[-1,1]上有零點(diǎn),求a的取值范圍;
(2)設(shè)函數(shù)g(x)=mx-2m,m∈R,當(dāng)a=0時,?x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{x}^{2}}{ax+b}$(a,b為常數(shù)),且方程f(x)=x-12有兩個實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>2,解關(guān)于x的不等式:f(x)<$\frac{(k+1)x-k}{2-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0AC邊上的高BH所在直線方程為x-2y-5=0.
求①頂點(diǎn)C的坐標(biāo);
②直線BC的方程;
③過A、C兩點(diǎn)且圓心在直線y=x上的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案