4.設(shè)a,b∈R,則“a>1,且b>1”是“a+b>2”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

分析 由“a>1,且b>1”,利用不等式的性質(zhì)可得:“a+b>2”,反之不成立,例如取a=$\frac{1}{2}$,b=2.即可判斷出結(jié)論.

解答 解:由“a>1,且b>1”可得:“a+b>2”,反之不成立,例如取a=$\frac{1}{2}$,b=2.
∴“a>1,且b>1”是“a+b>2”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求值:cos(x+27°)cos(x-18°)+sin(x+27°)sin(x-18°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一條漸近線與直線2x+y-3=0垂直,則該雙曲線的離心率為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=-2,則|$\overrightarrow{a}$+$\overrightarrow$}=( 。
A.4B.5C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等比數(shù)列{an}的前3項(xiàng)的積為1,第4項(xiàng)為$\frac{1}{9}$.求它的首項(xiàng)、公比及前5項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點(diǎn),若$\overrightarrow{AB}$=2$\overrightarrow{BC}$,則( 。
A.b=a2B.a=b2C.b=a3D.a=b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某集團(tuán)計(jì)劃調(diào)整某種產(chǎn)品的價(jià)格,為此銷售部在3月1日至3月5日連續(xù)五天對(duì)某個(gè)大型批發(fā)市場(chǎng)中該產(chǎn)品一天的銷售量及其價(jià)格進(jìn)行了調(diào)查,其中該產(chǎn)品的價(jià)格x(元)與銷售量y(萬(wàn)件)之間的數(shù)據(jù)如表所示:
日期3月1日3月2日3月3日3月4日3月5日
價(jià)格x(元)99.51010.511
銷售量y(萬(wàn)件)1110865
已知銷售量y與價(jià)格x之間具有線性相關(guān)關(guān)系,其回歸直線方程為:y=bx+40,若該集團(tuán)調(diào)整該產(chǎn)品的價(jià)格到10.2元,預(yù)測(cè)批發(fā)市場(chǎng)中該產(chǎn)品的日銷售量約為(  )
A.7.66萬(wàn)件B.7.86萬(wàn)件C.8.06萬(wàn)件D.7.36萬(wàn)件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若集合A={x|y=lnx},B={x|x2-x>0},則A∩B=( 。
A.[0,1]B.(-∞,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=|{x-a}|+|{x-\frac{1}{2}}|,x∈R$
(Ⅰ)當(dāng)$a=\frac{5}{2}$時(shí),解不等式f(x)≤x+10;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案