分析 利用重心的性質(zhì)和向量的三角形法則可得出$\overrightarrow{OG}$=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$),再由向量數(shù)量積的性質(zhì):向量的平方即為模的平方和向量垂直的條件:數(shù)量積為0,計(jì)算即可得到所求值.
解答 解:如圖所示,連接AG并延長(zhǎng)與BC相交于點(diǎn)D.
∵點(diǎn)G是底面△ABC的重心,
∴$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$•$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$),
$\overrightarrow{OG}$=$\overrightarrow{OA}$+$\overrightarrow{AG}$=$\overrightarrow{OA}$+$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)
=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$),
則$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)
=$\frac{1}{3}$[($\overrightarrow{OA}$+$\overrightarrow{OB}$)2-$\overrightarrow{OC}$2]=$\frac{1}{3}$($\overrightarrow{OA}$2+$\overrightarrow{OB}$2+2$\overrightarrow{OA}$•$\overrightarrow{OB}$-$\overrightarrow{OC}$2)
=$\frac{1}{3}$(1+4+0-9)=-$\frac{4}{3}$.
故答案為:-$\frac{4}{3}$.
點(diǎn)評(píng) 本題考查重心的性質(zhì)和向量的三角形法則,考查向量垂直的條件和向量的平方即為模的平方,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<r≤5 | B. | 0<r<5 | C. | r>13 | D. | r>13或0<r<3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com