3.如圖,已知正方形ABCD,點E是BC上一點,以AE為邊作正方形AEFG.
(1)連結(jié)GD,求證△ADG≌△ABE;
(2)連結(jié)FC,求證∠FCN=45°;
(3)請問在AB邊上是否存在一點Q,使得四邊形DQEF是平行四邊形?若存在,請證明;若不存在,請說明理由.

分析 (1)由AB=AD,AE=AG,∠DAG=∠BAE推出三角形全等;
(2)過F作BN的垂線,設(shè)垂足為H,證明FH=CH即可.
(3)取AB中點Q,連結(jié)DQ,使用全等三角形得出AG與QD平行且相等,AG與EF平行且相等,故QD與EF平行且相等.

解答 證明:(1)如圖,連接DG,
∵四邊形ABCD和四邊形AEFG是正方形,
∴DA=BA,EA=GA,∠BAD=∠EAG=90°,
∴∠DAG=∠BAE,
∴△ADG≌△ABE;
(2)過F作BN的垂線,設(shè)垂足為H,
∵∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,
∴∠BAE=∠HEF,
∵AE=EF,
∴△ABE≌△EHF,
∴AB=EH,BE=FH,
∴AB=BC=EH,
∴BE+EC=EC+CH
∴CH=BE=FH,
∴∠FCN=45°;
(3)在AB上取AQ=BE,連接QD,
∵AB=AD,
∴△DAQ≌△ABE,
∵△ABE≌△EHF,
∴△DAQ≌△ABE≌△ADG,
∴∠GAD=∠ADQ,
∴AG、QD平行且相等,
又∵AG、EF平行且相等,
∴QD、EF平行且相等,
∴四邊形DQEF是平行四邊形,
∴在AB邊上存在一點Q,使得四邊形DQEF是,平行四邊形.

點評 本題考查了全等三角形的判定與性質(zhì),平行四邊形的判定,作出輔助線,找到全等三角形是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若f(x)=$\left\{\begin{array}{l}{lg(x-2),x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,則函數(shù)y=f(x)的零點是3,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義:離心率e=$\frac{\sqrt{5}-1}{2}$的橢圓為“黃金橢圓”,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),e為橢圓E的離心率,則e2+e-1=0是橢圓E為“黃金橢圓”的(  )
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知alog94=1,3b=2,則ab=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各表格中,不能看成y關(guān)于x的函數(shù)的是(  )
A.
 x 1 2 3
 y 2 4 6
B.
 x 1 2 3
 y 2 2 6
C.
 x 1 1 3
 y 2 4 6
D.
 1 2 
 y 2 4 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α終邊上一點P(-4,3),求$\frac{{sin(α-2π)+cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(π-α)+cos(\frac{11π}{2}-α)sin(\frac{3π}{2}+α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知cosα=-$\frac{4}{5},\;\;α∈(\;π,\;\frac{3π}{2}\;)$,求tanα.
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)F1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦點,若橢圓上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則橢圓離心率為(  )
A.$\frac{{\sqrt{5}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{4}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC的面積為S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
(1)求sinA,cosA,tan2A的值;
(2)若$B=\frac{π}{4},\;\;|{\overrightarrow{CA}-\overrightarrow{CB}}|=6$,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案