15.(1)已知cosα=-$\frac{4}{5},\;\;α∈(\;π,\;\frac{3π}{2}\;)$,求tanα.
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得所給式子的值.

解答 解:(1)已知cosα=-$\frac{4}{5},\;\;α∈(\;π,\;\frac{3π}{2}\;)$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{3}{5}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$.
(2)若tanα=2,∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=3.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.與圓(x-2)2+y2=1相切且在兩坐標軸上截距相等的直線共有( 。
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,其漸近線方程為y=±$\frac{2}{3}$x,若點P是其右支上(不同于右頂點)一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,則△PF1F2的內(nèi)切圓的圓心的橫坐標為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知正方形ABCD,點E是BC上一點,以AE為邊作正方形AEFG.
(1)連結(jié)GD,求證△ADG≌△ABE;
(2)連結(jié)FC,求證∠FCN=45°;
(3)請問在AB邊上是否存在一點Q,使得四邊形DQEF是平行四邊形?若存在,請證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若不等式m2-2km≥0對所有k∈[-1,1]恒成立,則實數(shù)m的取值范圍是(-∞,-2]∪{0}∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx-x2,g(x)=$\sqrt{x}$-x-2.
(Ⅰ)若不等式f(x)≤ag(x)對x∈[$\frac{1}{4}$,1]恒成立,求實數(shù)a的取值范圍;
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)+$\frac{1}{2}$x的最大值,并證明當n∈N時f(n)+g(n)≤-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,∠AOB=150°,點C在∠AOB的內(nèi)部且∠AOC=30°,設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則$\frac{m}{n}$=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.學校有兩個食堂,現(xiàn)有3名學生前往就餐,則三個人在同一個食堂就餐的概率是$\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案