13.已知△ABC的面積為S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
(1)求sinA,cosA,tan2A的值;
(2)若$B=\frac{π}{4},\;\;|{\overrightarrow{CA}-\overrightarrow{CB}}|=6$,求△ABC的面積S.

分析 (1)把S=$\frac{1}{2}bcsinA$代入$\overrightarrow{AB}•\overrightarrow{AC}=S$,解出A,
(2)c=|$\overrightarrow{BA}$|=|$\overrightarrow{CA}-\overrightarrow{CB}$|=6,求出sinC,使用正弦定理求出b,代入面積公式.

解答 解:(1)∵$\overrightarrow{AB}•\overrightarrow{AC}=S$,∴b•c•cosA=$\frac{1}{2}$bcsinA,∴tanA=2,A∈(0,$\frac{π}{2}$).
∵sin2A+cos2A=1,∴sinA=$\frac{2\sqrt{5}}{5}$,cosA=$\frac{\sqrt{5}}{5}$,tan2A=$\frac{2tanA}{1-ta{n}^{2}A}$=$-\frac{4}{3}$.
(2)|$\overrightarrow{BA}$|=|$\overrightarrow{CA}-\overrightarrow{CB}$|=6,即c=6.sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{2\sqrt{5}}{5}×\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}×\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{10}}{10}$.
由正弦定理得:$\frac{sinB}=\frac{c}{sinC}$,∴b=$\frac{c•sinB}{sinC}$=2$\sqrt{5}$.
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×2\sqrt{5}×6×\frac{2\sqrt{5}}{5}$=12.

點(diǎn)評 本題考查了平面向量在解三角形中的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),以AE為邊作正方形AEFG.
(1)連結(jié)GD,求證△ADG≌△ABE;
(2)連結(jié)FC,求證∠FCN=45°;
(3)請問在AB邊上是否存在一點(diǎn)Q,使得四邊形DQEF是平行四邊形?若存在,請證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,∠AOB=150°,點(diǎn)C在∠AOB的內(nèi)部且∠AOC=30°,設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則$\frac{m}{n}$=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ω,t>0,函數(shù)$f(x)=|{\begin{array}{l}{\sqrt{3}}&{sinωx}\\ 1&{cosωx}\end{array}}|$的最小正周期為2π,將f(x)的圖象向左平移t個單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則t的最小值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,a1+a3+a5=9,a2+a4+a6=15,則數(shù)列{an}的前10項的和等于80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.圓心在點(diǎn)A(a,$\frac{π}{2}$),半徑等于a的圓的極坐標(biāo)方程是ρ=2asinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.學(xué)校有兩個食堂,現(xiàn)有3名學(xué)生前往就餐,則三個人在同一個食堂就餐的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,邊長為1的菱形ABCD,∠ABC=60°,E為AB中點(diǎn),F(xiàn)為AD中點(diǎn),則$\overrightarrow{CE}•\overrightarrow{BF}$=-$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),則實數(shù)a的取值范圍為(  )
A.(-1,0)B.[-2,0]C.(-∞,-2)∪(-1,0)D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊答案