8.若f(x)=$\left\{\begin{array}{l}{lg(x-2),x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,則函數(shù)y=f(x)的零點(diǎn)是3,-1.

分析 分別令lg(x-2)=0,x2-1=0,解出即可.

解答 解:由lg(x-2)=0,解得:x=3,
由x2-1=0,解得:x=-1,
故函數(shù)f(x)的零點(diǎn)是3,-1,
故答案為:3,-1.

點(diǎn)評(píng) 本題考察了函數(shù)的零點(diǎn)問題,考察函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)$z=\frac{5+3i}{1-i}$,則下列說(shuō)法正確的是( 。
A.z的虛部為4iB.z的共軛復(fù)數(shù)為1-4i
C.|z|=5D.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知sin(2π-α)=$\frac{4}{5}$,α∈($\frac{3π}{2}$,2π),則$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.定義數(shù)列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),則使xn是整數(shù)的n的最小值是( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.1+2i+3i2+…+2005i2004的值是( 。
A.-1000-1000iB.-1002-1002iC.1003-1002iD.1005-1000i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(-1,1)上是增函數(shù);
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.與圓(x-2)2+y2=1相切且在兩坐標(biāo)軸上截距相等的直線共有( 。
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,在幾何體ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,點(diǎn)D在底面ABC上的射影O為底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)證明:A,D,E,O四點(diǎn)共面;
(2)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),以AE為邊作正方形AEFG.
(1)連結(jié)GD,求證△ADG≌△ABE;
(2)連結(jié)FC,求證∠FCN=45°;
(3)請(qǐng)問在AB邊上是否存在一點(diǎn)Q,使得四邊形DQEF是平行四邊形?若存在,請(qǐng)證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案