4.已知($\sqrt{2+\sqrt{3}}$)x+($\sqrt{2-\sqrt{3}}$)x=4.求x的值.

分析 利用分子有理化,化簡兩根根式在,利用換元法轉(zhuǎn)化為一元二次方程進(jìn)行求解即可.

解答 解:∵$\sqrt{2-\sqrt{3}}$=$\sqrt{\frac{(2-\sqrt{3})(2+\sqrt{3})}{2+\sqrt{3}}}$=$\sqrt{\frac{1}{2+\sqrt{3}}}$=$\frac{1}{\sqrt{2+\sqrt{3}}}$,
∴方程等價(jià)為($\sqrt{2+\sqrt{3}}$)x+($\frac{1}{\sqrt{2+\sqrt{3}}}$)x=4,
設(shè)t=$\sqrt{2+\sqrt{3}}$,則t>1,
則方程等價(jià)為tx+($\frac{1}{t}$)x=4,
即(tx2-4tx+1=0,
則tx=$\frac{4±\sqrt{16-4}}{2}$=$\frac{4±2\sqrt{3}}{2}$=2±$\sqrt{3}$,
若tx=2-$\sqrt{3}$,即($\sqrt{2+\sqrt{3}}$)x=(2+$\sqrt{3}$)${\;}^{\frac{x}{2}}$=2+$\sqrt{3}$,
即$\frac{x}{2}$=1,則x=2,
若tx=2-$\sqrt{3}$,即($\sqrt{2+\sqrt{3}}$)x=(2+$\sqrt{3}$)${\;}^{\frac{x}{2}}$=2-$\sqrt{3}$=$\frac{1}{\sqrt{2+\sqrt{3}}}$=(2+$\sqrt{3}$)-1
則$\frac{x}{2}$=-1,則x=-2,
綜上所述,x=2或-2.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用換元法轉(zhuǎn)化為一元二次方程是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某班主任統(tǒng)計(jì)本班學(xué)生放學(xué)回家后學(xué)習(xí)時(shí)間為18時(shí)至23時(shí),已知甲每天連續(xù)學(xué)習(xí)4時(shí),乙每天連續(xù)學(xué)習(xí)3小時(shí),則19時(shí)至20時(shí)甲、乙都在學(xué)習(xí)的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.己知函數(shù)f(x)=$\frac{2x+3}{x-1}$,若函數(shù)y=g(x)與y=f-1(x+1)的圖象關(guān)于直線y=x對稱,則g(3)的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若sin($\frac{π}{4}$+α)=sinθ+cosθ,2sin2β=sin2θ,求證:sin2α+2cos2β=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列結(jié)論中,正確的是②③
①若y=1n2,則y′=$\frac{1}{2}$;②若y=2x,則y′=2x1n2;③若y=1gx,則y′=$\frac{1}{xln10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$\root{5}{5}$,$\root{3}{3}$,$\sqrt{2}$的大小關(guān)系是$\root{3}{3}$>$\sqrt{2}$>$\root{5}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓的中心在原點(diǎn),兩焦點(diǎn)F1,F(xiàn)2在x軸上,且過點(diǎn)A(-4,3).
(1)若F1A⊥F2A,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,若點(diǎn)P為橢圓上一點(diǎn),且滿足∠F1PF2=120°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)2sin2α=-sinα,α∈($\frac{π}{2}$,π),則tan2α的值是$\frac{\sqrt{15}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)直線y=t與曲線C:y=x(x-3)2的三個(gè)交點(diǎn)分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結(jié)論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;
③c-a有最小值無最大值.
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案