11.在鈍角三角形ABC中,A,B,C的對邊分別是a,b,c,B=60°,4sinC-6sinA=$\sqrt{3}$,則$\frac{c}{a}$=$\frac{17}{12}$.

分析 利用已知可得2$\sqrt{3}$cosA-4sinA=$\sqrt{3}$①,由sinA>0,可得cosA>0,即A為銳角,C為鈍角,又sin2A+cos2A=1②,由①②可解得sinA,可求sinC,由正弦定理即可得解.

解答 解:∵B=60°,4sinC-6sinA=$\sqrt{3}$,
∴4sin(120°-A)-6sinA=2$\sqrt{3}$cosA-4sinA=$\sqrt{3}$①,
∵sinA>0,故由①可得cosA>0,即A為銳角,C必然為鈍角.
又∵sin2A+cos2A=1②,
∴由①②可解得:7sin2A+2$\sqrt{3}$sinA-$\frac{9}{4}$=0.解得:sinA=$\frac{3\sqrt{3}}{14}$.
∴sinC=$\frac{\sqrt{3}+6sinA}{4}$=$\frac{4\sqrt{3}}{7}$,
∴由正弦定理可得:$\frac{c}{a}=\frac{sinC}{sinA}$=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.

點評 本題主要考查了正弦定理,兩角差的正弦函數(shù)公式,同角三角函數(shù)關(guān)系式的應(yīng)用,考查了計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.根據(jù)如圖所示的代碼,可知輸出的結(jié)果S為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知tanα,tanβ為方程x2-5x+2=0的解,則tan(α+β)的值為(  )
A.$\frac{1}{5}$B.5C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐S-ABCD中,側(cè)棱SD垂直于正方形ABCD所在的平面,E、F分別是SB、SD的中點,求證:
(1)EF∥平面ABCD;
(2)SB∥平面FAC;
(3)AC⊥SB;
(4)平面SDC⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等$\frac{1}{a-b}+\frac{1}{b-c}+\frac{λ}{c-a}<0$對滿足a>b>c恒成立,則λ的取值范圍 ( 。
A.(-∞,0]B.(-∞,1)C.(-∞,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是( 。
A.?x∈(-1,1)使得cosx<$\frac{1}{2}$
B.“-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間($\frac{1}{2}$,2)上有零點”的必要不充分條件
C.x=$\frac{π}{6}$是曲線f(x)=$\sqrt{3}$sin2x+cos2x的一條對稱軸
D.若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=${{log}^{2}}_{\frac{1}{3}}x$${+log}_{\frac{1}{3}}x$,
(1)當(dāng)0≤log3x≤2時,求函數(shù)y的值域:
(2)求函數(shù)y的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求y=3cos2x-4cosx+1,x∈[$\frac{π}{3}$,$\frac{2π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)表達(dá)式為y=2sin(2x-$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊答案