13.已知正數(shù)a,b,c滿足約束條件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,則$\frac{2c-b}{a}$的最大值為( 。
A.$\frac{9}{2}$B.$\frac{7}{2}$C.0D.-1

分析 由題意得到關(guān)于$\frac{a},\frac{c}{a}$的不等式組,令x=$\frac{a}$,y=$\frac{c}{a}$換元后作出可行域,進(jìn)一步求得目標(biāo)函數(shù)z=$\frac{2c-b}{a}$=-x+2y的最大值.

解答 解:由$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,
得$\left\{\begin{array}{l}{\frac{a}+\frac{c}{a}≥1}\\{\frac{a}+\frac{c}{a}≤3}\\{\frac{a}-\frac{c}{a}≤1}\\{\frac{a}-\frac{c}{a}≥-2}\end{array}\right.$,
令x=$\frac{a}$,y=$\frac{c}{a}$,
則$\left\{\begin{array}{l}{x+y≥1}\\{x+y≤3}\\{x-y≤1}\\{x-y≥-2}\end{array}\right.$,z=$\frac{2c-b}{a}$=-x+2y.
作出可行域如圖:
聯(lián)立$\left\{\begin{array}{l}{x-y=-2}\\{x+y=3}\end{array}\right.$,解得A($\frac{1}{2},\frac{5}{2}$),
∴z=-x+2y的最大值為$\frac{9}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知一個(gè)四棱錐三視圖如圖所示,若此四棱錐的五個(gè)頂點(diǎn)在某個(gè)球面上,則該球的表面積為( 。
A.48πB.52πC.$\frac{172}{3}$πD.$\frac{196}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平行六面體ABCD-A1B1C1D1中,∠BAA1=∠DAA1=∠BAD=60°,且所有棱長均為2,則對(duì)角線AC1的長為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某種商品每日的銷售量y(單位:噸)與銷售價(jià)格x(單位:萬元/噸,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x-4)2+$\frac{6}{x-1}$(a為常數(shù));當(dāng)3<x≤5時(shí),y=kx+7(k<0),已知當(dāng)銷售價(jià)格為3萬元/噸時(shí),每日可售出該商品4噸,且銷售價(jià)格x∈(3,5]變化時(shí),銷售量最低為2噸.
(1)求a,k的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該商品的銷售成本為1萬元/噸,試確定銷售價(jià)格x的值,使得每日銷售該商品所獲利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式x2-ax+1>0對(duì)?x∈R恒成立,若p且q為假,¬p為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=ax3-3x在區(qū)間(-1,1)上為單調(diào)減函數(shù),則a的取值范圍是a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中既是奇函數(shù),又是其定義域上的增函數(shù)的是( 。
A.y=|x|B.y=lnxC.y=x${\;}^{\frac{1}{3}}$D.y=x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若等軸雙曲線經(jīng)過點(diǎn)M(1,2),則此雙曲線的半焦距為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,點(diǎn)E是平行四邊形ABCD對(duì)角線BD的n(n∈N且n≥2)等分點(diǎn)中最靠近點(diǎn)D的那點(diǎn).線段AE的延長線交CD于點(diǎn)F,若向量$\overrightarrow{AF}=\frac{1}{n-1}\overrightarrow{AB}+x\overrightarrow{AD}$,則實(shí)數(shù)x的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案