13.已知函數(shù)f(x)=2cos(x-$\frac{2}{3}$π)+2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函數(shù)f(x)的值;
(2)求函數(shù)f(x)的值域.

分析 (1)利用差角公式展開合并得到f(x),根據(jù)x的范圍求出cosx,代入計算即可;
(2)使用輔助角公式繼續(xù)化簡f(x),根據(jù)x的范圍和正弦函數(shù)的圖象與性質(zhì)求出f(x)的最值.

解答 解:(1)f(x)=2cos$\frac{2π}{3}$cosx+2sin$\frac{2π}{3}$sinx+2cosx=cosx+$\sqrt{3}$sinx=2sin(x+$\frac{π}{6}$).
∵x∈[$\frac{π}{2}$,π],sinx=$\frac{4}{5}$,∴cosx=-$\frac{3}{5}$.
∴f(x)=cosx+$\sqrt{3}$sinx=-$\frac{3}{5}$+$\frac{4\sqrt{3}}{5}$=$\frac{4\sqrt{3}-3}{5}$.
(2)∵x∈[$\frac{π}{2}$,π],∴x+$\frac{π}{6}$∈[$\frac{2π}{3}$,$\frac{7π}{6}$],
∴當(dāng)x+$\frac{π}{6}$=$\frac{2π}{3}$時,f(x)取得最大值$\sqrt{3}$,當(dāng)x+$\frac{π}{6}$=$\frac{7π}{6}$時,f(x)取得最小值-1.
∴f(x)的值域是[-1,$\sqrt{3}$].

點評 本題考查了三角函數(shù)的恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.我市為了檢測空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采用10分制,保留一位小數(shù)),現(xiàn)隨機抽取20天的指數(shù),繪制成如圖所示的統(tǒng)計圖(以整數(shù)部分為莖,小數(shù)部分為葉),設(shè)指數(shù)不低于8.5的視為當(dāng)天空氣質(zhì)量為優(yōu)良.
(1)求從這20天中隨機抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(2)以這20天的數(shù)據(jù)估計我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=(x2-1)e|x|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax-ln(-x),x∈[-e,0),其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)當(dāng)a=-1時,確定f(x)的單調(diào)性和極值;
(Ⅱ)當(dāng)a=-1時,證明:f(x)+$\frac{ln(-x)}{x}$>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.生產(chǎn)一批零件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于8為優(yōu)質(zhì)品,小于8大于等于4為正品,小于4為次品,現(xiàn)隨機抽取這種零件100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:據(jù)以上述測試中各組的頻率作為相應(yīng)的概率.
測試指標(biāo)[0,2)[2,4)[4,6)[6,8)[8,10)
 零件數(shù) 2 3238 20
(1)試估計這種零件的平均質(zhì)量指標(biāo);
(2)生產(chǎn)一件零件,若是優(yōu)質(zhì)品可盈利40元,若是正品盈利20元,若是次品則虧損20元,若從大量的零件中隨機抽取2件,其利潤之和記為x(單位:元),求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A、B、C三點不共線,O為平面ABC外的一點,$\overrightarrow{OP}$=$\frac{1}{5}$$\overrightarrow{OA}$+$\frac{7}{3}$$\overrightarrow{OB}$+$λ\overrightarrow{OC}$(λ∈R)確定的點P與A、B、C四點共面,則λ的值為-$\frac{23}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若復(fù)數(shù)z0=i在復(fù)平面上所對應(yīng)的點為Z0,動點Z所對應(yīng)的復(fù)數(shù)為z,且|z|=2,則|ZZ0|的取值范圍為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知全集U={1,2,3,4},其子集為A={1,|a-3|},∁uA={2,3},求實數(shù)a的值;
(2)已知集合A={2x,x2+x-2},且-2∈A,求實數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,曲線C:(x-2)2+(y-3)2=1,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(p∈R).
(1)求曲線C的參數(shù)方程及直線l的直角坐標(biāo)方程;
(2)設(shè)曲線C與直線l相交于點A、B,若點P為曲線C上一動點(異于點A、B),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案