分析 (1)利用平面向量的數(shù)量積公式求出f(x)并化簡,結(jié)合正弦函數(shù)的單調(diào)性求出單調(diào)區(qū)間;
(2)令g(x)=0得到關(guān)于x的三角方程解出即可.
解答 解:(1)sin2x+$\frac{1+cos2x}{2}$=sin2x+cos2x=1,∴$\overrightarrow{m}$=(1,sinx),
∴f(x)=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+2sin2x=-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+1=-sin(2x+$\frac{π}{6}$)+1.
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
令$\frac{π}{2}$+2kπ≤2x$+\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}+2kπ$.
∴f(x)的單調(diào)增區(qū)間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}+2kπ$].k∈Z.
(2)g(x)=-sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$.
令g(x)=0得sin(2x+$\frac{π}{6}$)=$\frac{3}{2}$,方程無解.
∴g(x)在[0,π]上無零點.
點評 本題考查了三角函數(shù)的恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 每個70元 | B. | 每個85元 | C. | 每個80元 | D. | 每個75元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 4$\sqrt{5}$ | C. | 12 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com