分析 (1)由正弦定理可得sinC=$\frac{\sqrt{3}}{2}$,結(jié)合范圍180°>C>45°,即可得解C的值;
(2)由余弦定理整理可得:a2-2$\sqrt{3}$a+2=0,即可解得a的值.
解答 解:(1)∵b=2,c=$\sqrt{6}$,B=45°,
∴由正弦定理可得:sinC=$\frac{csinB}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵b<c,可得:180°>C>45°,
∴C=60°或120°.
(2)由余弦定理可得:b2=a2+c2-2accosB,
可得:4=a${\;}^{2}+6-2a×\sqrt{6}×\frac{\sqrt{2}}{2}$,整理可得:a2-2$\sqrt{3}$a+2=0,
解得:a=$\sqrt{3}±$1.
點評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | -32 | C. | -33 | D. | -31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{\sqrt{7}-4}{3}$,$\frac{\sqrt{7}+4}{3}$] | B. | (0,$\frac{4-\sqrt{7}}{3}$] | C. | [0,$\frac{4+\sqrt{7}}{3}$] | D. | [$\frac{4-\sqrt{7}}{3}$,$\frac{4+\sqrt{7}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com