分析 求出BC,可得△ABC外接圓的半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球表面積.
解答 解:∵AB=2$\sqrt{3}$,AC=4,∠BAC=30°,
∴BC=$\sqrt{12+16-2×2\sqrt{3}×4×\frac{\sqrt{3}}{2}}$=2,
∴三角形ABC的外接圓直徑AC=4,
設(shè)球心為O,AC的中點(diǎn)為D,球的半徑為R,則PD=2$\sqrt{2}$
∴R2=(2$\sqrt{2}$-R)2+4,
則有該三棱錐的外接球的半徑R=$\frac{3\sqrt{2}}{2}$,
∴該三棱錐的外接球的表面積為S=4πR2=4π×($\frac{3\sqrt{2}}{2}$)2=18π.
故答案為:18π.
點(diǎn)評 本題考查三棱錐的外接球表面積,考查直線和平面的位置關(guān)系,確定三棱錐的外接球的半徑是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,3) | B. | [1,3) | C. | (1,3) | D. | (-3,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com