11.三棱錐P-ABC中,平面PAC⊥平面ABC,PA=PC=AB=2$\sqrt{3}$,AC=4,∠BAC=30°.若三棱錐P-ABC的四個頂點(diǎn)都在同一球面上,則該球的表面積為18π.

分析 求出BC,可得△ABC外接圓的半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球表面積.

解答 解:∵AB=2$\sqrt{3}$,AC=4,∠BAC=30°,
∴BC=$\sqrt{12+16-2×2\sqrt{3}×4×\frac{\sqrt{3}}{2}}$=2,
∴三角形ABC的外接圓直徑AC=4,
設(shè)球心為O,AC的中點(diǎn)為D,球的半徑為R,則PD=2$\sqrt{2}$
∴R2=(2$\sqrt{2}$-R)2+4,
則有該三棱錐的外接球的半徑R=$\frac{3\sqrt{2}}{2}$,
∴該三棱錐的外接球的表面積為S=4πR2=4π×($\frac{3\sqrt{2}}{2}$)2=18π.
故答案為:18π.

點(diǎn)評 本題考查三棱錐的外接球表面積,考查直線和平面的位置關(guān)系,確定三棱錐的外接球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$)-1

①求f(x)的最小正周期;
②用列表、描點(diǎn)、連線的方法在給定的坐標(biāo)系中作出f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象;
③若函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個單位,再向上平移1個單位,然后將橫坐標(biāo)不變縱坐標(biāo)縮短為原來的$\frac{1}{2}$,得到函數(shù)y=g(x)的圖象,試化簡:1+g(x)-g(x+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|x2-5x+6>0};B={x|x2-4<0},求(1)A∩B;(2)A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x||x|<3},B={x|y=lg$\sqrt{x-1}$},則集合A∩(∁RB)=( 。
A.[0,3)B.[1,3)C.(1,3)D.(-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在邊長為2的等邊△ABC中,E,F(xiàn)分別是BC,AC的中點(diǎn),則2$\overrightarrow{AE}$•$\overrightarrow{FB}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為圓M:x2+y2-4x=0的圓心,直線l與拋物線C的準(zhǔn)線和y軸分別交于點(diǎn)P、Q,且P、Q的縱坐標(biāo)分別為3t-$\frac{1}{t}$、2t(t∈R,t≠0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)求證:直線l恒與圓M相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(diǎn)P(4,6)的圓x2+y2=16的切線方程為5x-12y+52=0或x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,已知a>b>c,且a=10,b=8,△ABC的面積為24,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=4x,直線l:y=k(x+1),
(1)若直線l與C有兩個不同的公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)當(dāng)k=$\frac{1}{2}$時,直線l截拋物線C的弦長.

查看答案和解析>>

同步練習(xí)冊答案