分析 (I)利用已知及面面平行的性質(zhì)可得AB∥DE,由E是棱BC的中點(diǎn),即可得D是線段AC的中點(diǎn).
(II)先證明A1C⊥AC1,又由(1)可得AB⊥A1C,可證A1C⊥面ABC1,即可證明A1C⊥BC1,又EF∥BC1,從而得證EF⊥A1C.
解答 (本題滿分為12分)
解:(I)∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,
∴AB∥DE,-------(4分)
∵在△ABC中E是棱BC的中點(diǎn),
∴D是線段AC的中點(diǎn).------------(6分)
(II)∵三棱柱ABC-A1B1C1中AC=AA1,
∴側(cè)面A1ACC1是菱形,
∴A1C⊥AC1,--------------------------------(7分)
由(1)可得AB⊥A1C,
∵AB∩AC1=A,
∴A1C⊥面ABC1,---------------(9分)
∴A1C⊥BC1.-------(10分)
又∵E,F(xiàn)分別為棱BC,CC1的中點(diǎn),
∴EF∥BC1,--------(11分)
∴EF⊥A1C.---------(12分)
點(diǎn)評(píng) 本題主要考查了面面平行的性質(zhì),直線與平面垂直的判定和性質(zhì)的應(yīng)用,考查了空間想象能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{5}$ | D. | 2$\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,+∞) | B. | (-∞,0] | C. | [-2,0] | D. | (-∞,-2]∪[0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 16 | C. | 15 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若am2≤bm2,則a≤b”是假命題 | |
B. | 命題“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,${{x}_{0}}^{3}$-${{x}_{0}}^{2}$-1>0” | |
C. | “若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題 | |
D. | 命題“p∨q為真命題”是命題“p∧q為真”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3] | B. | (1,3) | C. | [1,3) | D. | [1,3] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com