分析 (1)根據(jù)題意,由余弦定理可得x2+y2-2xycos120°=30000,變形可得x2+y2+xy=30000,分析x、y的取值范圍即可得答案;
(2)由(1)可得x2+y2+xy=30000,對其變形可得(x+y)2-30000=xy,結(jié)合基本不等式可得${(x+y)^2}-30000≤{(\frac{x+y}{2})^2}$,解可得x+y≤200,分析可得答案.
解答 解:(1)在△ABC中,由余弦定理,得AB2+AC2-2AB•ACcosA=BC2,
所以x2+y2-2xycos120°=30000,
即x2+y2+xy=30000,…(4分)
又因?yàn)閤>0,y>0,所以$0<x<100\sqrt{3},0<y<100\sqrt{3}$.…(6分)
(2)要使所用的新型材料總長度最短只需x+y的最小,
由(1)知,x2+y2+xy=30000,所以(x+y)2-30000=xy,
因?yàn)?xy≤{(\frac{x+y}{2})^2}$,所以${(x+y)^2}-30000≤{(\frac{x+y}{2})^2}$,…(9分)
則(x+y)2≤40000,即x+y≤200,
當(dāng)且僅當(dāng)x=y=100時,上式不等式成立.…(11分)
故當(dāng)AB,AC邊長均為100米時,所用材料長度最短為200米.…(12分)
點(diǎn)評 本題考查基本不等式在最值問題中的運(yùn)用,關(guān)鍵是利用余弦定理得到變量x、y之間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{1}{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\frac{1}{3}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{4}$ | B. | 2 | C. | -2 | D. | $\frac{13}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com