1.若a=30.5,b=ln2,c=log3sin$\frac{π}{6}$,則下列不等式正確的是( 。
A.a>b>cB.b>a>cC.b>c>aD.c>a>b

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)求解.

解答 解:∵a=30.5>30=1,
0=ln1<b=ln2<lne=1,
c=log3sin$\frac{π}{6}$<log31=0,
∴a>b>c.
故選:A.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知拋物線y2=2px(p>0)的焦點為F,過點A(0,4)作與拋物線的對稱軸平行的直線交拋物線于點B,且4|BF|=5|AB|.
(1)求拋物線上的點到直線x-y+3=0的最短距離;
(2)是否存在過點A的直線l,直線l交拋物線于C,D兩點,且使得BC⊥BD,若存在,請求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.“城市呼喚綠化”,發(fā)展園林綠化事業(yè)是促進國家經(jīng)濟法陣和城市建設(shè)事業(yè)的重要組成部分,某城市響應(yīng)城市綠化的號召,計劃建一如圖所示的三角形ABC形狀的主題公園,其中一邊利用現(xiàn)成的圍墻BC,長度為100$\sqrt{3}$米,另外兩邊AB,AC使用某種新型材料圍成,已知∠BAC=120°,AB=x,AC=y(x,y單位均為米).
(1)求x,y滿足的關(guān)系式(指出x,y的取值范圍);
(2)在保證圍成的是三角形公園的情況下,如何設(shè)計能使所用的新型材料總長度最短?最短長度是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在[0,$\frac{π}{2}$]上任取一個實數(shù),使$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx≥$\frac{\sqrt{3}}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項和為Sn,且2an=Sn+2.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{n}{a_n}$,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知A={x|1<2x<4},B={x|log2x>0}.
(1)求A∪B;
(2)若記符號A-B={x|x∈A且x∉B},求B-A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出兩個球,則摸出的兩個都是白球的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知1650年世界人口為5億,當時人口的年增長率為0.3%;1970年世界人口為36億,當時人口的年增長率為2.1%.
(1)用馬爾薩斯人口模型計算,什么時候世界人口是1650年的2倍?什么時候世界人口是1970年的2倍?
(2)實際上,1850年以前世界人口就超過了10億;而2003年世界人口還沒有達到72億,你對同樣的模型得出的兩個結(jié)果有何看法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)f(x)=x2+px+q,集合A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)若q=1且A≠∅,求實數(shù)p的取值范圍;
(2)若A={-1,3},求B.

查看答案和解析>>

同步練習冊答案