3.已知p:x2-2x-8≤0,q:x2+mx-2m2≤0,m>0.
(1)若q是p的必要不充分條件,求m的取值范圍;
(2)若¬p是¬q的充分不必要條件,求m的取值范圍.

分析 分別求出關(guān)于p,q的x的范圍,根據(jù)充分必要條件的定義得到關(guān)于m的不等式組,解出即可.

解答 解:∵p:x2-2x-8≤0,∴-2≤x≤4,
∵q:x2+mx-2m2≤0,m>0,∴-2m≤x≤m;
(1)若q是p的必要不充分條件,
則p⇒q,
∴$\left\{\begin{array}{l}{-2≥-2m}\\{4≤m}\end{array}\right.$,(=不同時(shí)成立),
解得:m≥4;
(2)若¬p是¬q的充分不必要條件,
則q是p的充分不必要條件,
故$\left\{\begin{array}{l}{-2m≥-2}\\{m≤4}\end{array}\right.$(=不同時(shí)成立),
解得:m≤1.

點(diǎn)評(píng) 本題考察了充分必要條件,考察集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1>0,S8=S13,Sk=0,則k的值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知映射f:A→B,其中A=B=R,對(duì)應(yīng)法則f:x→y=x2-2x+3,若對(duì)實(shí)數(shù)k∈B,在集合A中存在2個(gè)原象,則k的取值范圍是( 。
A.k≥2B.k>2C.k<2D.k≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)A(0,4)作與拋物線的對(duì)稱軸平行的直線交拋物線于點(diǎn)B,且4|BF|=5|AB|.
(1)求拋物線上的點(diǎn)到直線x-y+3=0的最短距離;
(2)是否存在過(guò)點(diǎn)A的直線l,直線l交拋物線于C,D兩點(diǎn),且使得BC⊥BD,若存在,請(qǐng)求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知lgx+lgy=1,則2x+5y的最小值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知a為如圖所示的程序圖中輸出的結(jié)果,a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.四棱錐S-ABCD底面為正方形,邊長(zhǎng)為$\sqrt{2}$,且SA=SB=SC=SD,高為2,P,Q兩點(diǎn)分別在線段BD,SC上,則P,Q兩點(diǎn)間的最短距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.“城市呼喚綠化”,發(fā)展園林綠化事業(yè)是促進(jìn)國(guó)家經(jīng)濟(jì)法陣和城市建設(shè)事業(yè)的重要組成部分,某城市響應(yīng)城市綠化的號(hào)召,計(jì)劃建一如圖所示的三角形ABC形狀的主題公園,其中一邊利用現(xiàn)成的圍墻BC,長(zhǎng)度為100$\sqrt{3}$米,另外兩邊AB,AC使用某種新型材料圍成,已知∠BAC=120°,AB=x,AC=y(x,y單位均為米).
(1)求x,y滿足的關(guān)系式(指出x,y的取值范圍);
(2)在保證圍成的是三角形公園的情況下,如何設(shè)計(jì)能使所用的新型材料總長(zhǎng)度最短?最短長(zhǎng)度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一個(gè)口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出兩個(gè)球,則摸出的兩個(gè)都是白球的概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案