19.已知扇形的周長是7,面積是3,則扇形的中心角的弧度數(shù)是$\frac{3}{2}$或$\frac{8}{3}$.

分析 首先,設(shè)扇形的半徑為r,弧長為 l,然后,建立等式,求解l、r,最后,求解圓心角即可.

解答 解:設(shè)扇形的半徑為r,弧長為 l,則
l+2r=7,S=$\frac{1}{2}$lr=3,
∴解得r=2,l=3或r=$\frac{3}{2}$,l=4,
α=$\frac{l}{r}$=$\frac{3}{2}$或$\frac{8}{3}$,
故答案為:$\frac{3}{2}$或$\frac{8}{3}$.

點評 本題重點考查了扇形的周長公式、扇形的面積公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,AB=12,AC=5,BC=13,△ABC內(nèi)任意投一點P,則事件“△ABP的面積不小于6“的概率為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,sinA:sinB:sinC=3:4:$\sqrt{37}$,則三角形的最大角為120度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等邊三角形ABC的邊長為2,設(shè)$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,則$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線(m+2)x+2y-3=0與直線5x+(m-1)y+6=0互相平行,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在鈍角△ABC中,角A、B、C的對邊分別為a、b、c,且該三角形的外接圓的面積為4π
(1)若a=2$\sqrt{3}$,b=2,求△ABC的面積
(2)若a=2$\sqrt{3}$,求b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知p:方程y=(2m+1)x+m-4的圖象不經(jīng)過第二象限,q:雙曲線$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2-m}$=1表示焦點在x軸上的橢圓,若命題(¬p)∨q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點A(1,2),且平行于向量$\overrightarrow{n}$=(2,1)的直線方程為( 。
A.x-2y-3=0B.x-2y+3=0C.2x-y+3=0D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知sin(π+α)=$\frac{1}{3}$,求sin(-3π+α)的值.
(2)已知cos($\frac{π}{3}+α$)=-$\frac{1}{2}$,求cos($α-\frac{5π}{3}$)的值.

查看答案和解析>>

同步練習(xí)冊答案