5.平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|為$\sqrt{3}$或6.

分析 由平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,可得兩兩所成角為0°或120°.再利用數(shù)量積運算性質(zhì)即可得出.

解答 解:∵平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,
∴兩兩所成角為0°或120°.
∵|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,
當所成角為120°時,
∴$\overrightarrow{a}•\overrightarrow$=1×2×cos120°=-1,
$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{3}{2}$,
$\overrightarrow•\overrightarrow{c}$=-3,
則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+{\overrightarrow{c}}^{2}+2(\overrightarrow{a}•\overrightarrow+\overrightarrow{a}•\overrightarrow{c}+\overrightarrow•\overrightarrow{c})}$=$\sqrt{{1}^{2}+{2}^{2}+{3}^{2}+2(-1-\frac{3}{2}-3)}$=$\sqrt{3}$.
同理可得:當所成角為0°時,
則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=1+2+3=6.
故答案為:$\sqrt{3}$或6.

點評 本題考查了數(shù)量積運算性質(zhì)、向量夾角,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知命題p:焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的離心率e∈(0,$\frac{\sqrt{2}}{2}$);q:點P(1,-1)在圓x2+y2-4x+7-m=0外.若p∧q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\frac{\overrightarrow{a}+3\overrightarrow}{5}$-$\frac{\overrightarrow{a}-\overrightarrow}{2}$=$\frac{1}{5}$(3$\overrightarrow{a}$+2$\overrightarrow$),求證向量$\overrightarrow{a}$和$\overrightarrow$共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖是某學校一名籃球運動員在10場比賽中所得分數(shù)的莖葉圖,則該運動員在這10場比賽中得分的中位數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設二次函數(shù)y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(x1,0),若函數(shù)y=y2+y1的圖象與x軸僅有一個交點,則( 。
A.a(x2-x1)=dB.a(x1-x2)=dC.a(x1-x22=dD.a(x1+x22=d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),若數(shù)列{bn}的前n項和為Tn,證明:$\frac{1}{8}≤{T_n}<\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓C同時滿足下列三個條件:①與y軸相切;②在直線y=x上截得弦長為$\sqrt{7}$;③圓心在直線x-3y=0上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬股)與時間t(天)的函數(shù)關系式為Q=40-t(0≤t≤30且t∈N).
(1)根據(jù)提供的圖象,求出該種股票每股的交易價格P(元)與時間t(天)所滿足的函數(shù)關系式;
(2)用y(萬元)表示該股票日交易額(日交易額=日交易量×每股的交易價格),寫出y關于t的函數(shù)關系式,并求出這30天中第幾天日交易額最大,最大值為多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=cos(2x-$\frac{π}{4}$)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

查看答案和解析>>

同步練習冊答案