分析 設(shè)圓方程為(x-a)2+(y-b)=r2,由題意列出方程組求出a,b,由此能求出圓C的方程.
解答 解:設(shè)圓方程為(x-a)2+(y-b)=r2,
則由題意得$\left\{\begin{array}{l}{a-3b=0}\\{|a|=r}\\{(\frac{a-b}{\sqrt{2}})^{2}+7={r}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-3}\\{b=-1}\end{array}\right.$,
∴圓C的方程為(x-3)2+(y-1)2=9或(x+3)2+(y+3)2=9.
點評 本題考查圓的方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{13}$] | B. | (0,$\frac{5}{13}$] | C. | [$\frac{1}{13}$,1] | D. | [$\frac{3}{4}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 0 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com