17.已知圓C同時滿足下列三個條件:①與y軸相切;②在直線y=x上截得弦長為$\sqrt{7}$;③圓心在直線x-3y=0上,求圓C的方程.

分析 設(shè)圓方程為(x-a)2+(y-b)=r2,由題意列出方程組求出a,b,由此能求出圓C的方程.

解答 解:設(shè)圓方程為(x-a)2+(y-b)=r2,
則由題意得$\left\{\begin{array}{l}{a-3b=0}\\{|a|=r}\\{(\frac{a-b}{\sqrt{2}})^{2}+7={r}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-3}\\{b=-1}\end{array}\right.$,
∴圓C的方程為(x-3)2+(y-1)2=9或(x+3)2+(y+3)2=9.

點評 本題考查圓的方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等比數(shù)列{an}的各項均為正數(shù),S2=7,S6=91,則S4=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對應(yīng)如圖所示,其中能表示為M到N的函數(shù)關(guān)系的是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|為$\sqrt{3}$或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),已知x≥0時,f(x)=x(2-x).
(1)求函數(shù)f(x)的解析式.
(2)畫出奇函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,|$\overrightarrow{a}$-2$\overrightarrow$|≤2,則$\overrightarrow$在$\overrightarrow{a}$上的投影長度的取值范圍是(  )
A.[0,$\frac{1}{13}$]B.(0,$\frac{5}{13}$]C.[$\frac{1}{13}$,1]D.[$\frac{3}{4}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.△ABC的外接圓圓心為O,半徑為2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$,則$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$y=sin(-2x+\frac{π}{6})$的單調(diào)遞減區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時,f(x)=0,則$f(\frac{7π}{6})$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案