15.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 對$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$兩邊平方求出數(shù)量積與模長的關(guān)系,代入夾角公式計(jì)算.

解答 解:設(shè)$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$=t,則2t2+2$\overrightarrow{a}•\overrightarrow$=t2,∴$\overrightarrow{a}•\overrightarrow$=-$\frac{{t}^{2}}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-$\frac{1}{2}$.∴<$\overrightarrow{a},\overrightarrow$>=$\frac{2π}{3}$.
故選D.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,夾角計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線l1的方程為3x-y+1=0,直線l2的方程為2x+y-3=0,則兩直線l1與l2的夾角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{x}$.
(Ⅰ)求f(x)定義域;
(Ⅱ)證明f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在三棱柱A1B1C1-A2B2C2中,各側(cè)棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,則直線B1C1與平面A1MN所成角的正弦值為$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足4x2+y2+3xy=1,則2x+y的最大值為$\frac{{2\sqrt{14}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義在R上的偶函數(shù)f(x),當(dāng)x>0時(shí),f(x)=0.001x,則$f(-\frac{1}{3})$=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三張獎(jiǎng)券中有2張是有獎(jiǎng)的,甲、乙兩人從中各抽一張(抽出后不放回),甲先抽,然后乙抽,設(shè)甲中獎(jiǎng)的概率為P1,乙中獎(jiǎng)的概率為P2,那么( 。
A.P1=P2B.P1<P2
C.P1>P2D.P1,P2的大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.證明:C${\;}_{n}^{0}$C${\;}_{m}^{m}$+C${\;}_{n}^{1}$C${\;}_{m}^{m-1}$+…+C${\;}_{n}^{m}$C${\;}_{m}^{0}$=C${\;}_{m+n}^{m}$(其中n≥m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義域?yàn)镽,最小正周期是$\frac{3π}{2}$的函數(shù),若f(x)=$\left\{\begin{array}{l}{cosx(-\frac{π}{2}≤x≤0)}\\{sinx(0<x≤π)}\end{array}\right.$,則f(-$\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案