2.已知函數(shù)f(x)=x3+ax2+bx+c,且0<f(1)=f(2)=f(3)≤3,則c的取值范圍是( 。
A.c≤3B.3<c≤6C.-6<c≤-3D.c≥9

分析 由f(1)=f(2)=f(3),列出方程組求出a,b,得到f(x),再由0<f(1)≤3求出c的范圍.

解答 解:由f(1)=f(2)=f(3),
得$\left\{\begin{array}{l}{1+a+b+c=8+4a+2b+c}\\{1+a+b+c=27+9a+3b+c}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-6}\\{b=11}\end{array}\right.$,
則f(x)=x3-6x2+11x+c,
由0<f(1)≤3,得0<1-6+11+c≤3.
即-6<c≤-3.
故選:C.

點評 本題主要考查函數(shù)解析式的求解,以及不等式的應用,求出a,b的值是解決本題的關(guān)鍵,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.集合A={x|x2-x-6≤0},B={x|$\frac{2}{x-2}$<0},則∁R(A∩B)(-∞,-2)∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,且a1=3,Sn+1-2Sn=1-n,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)證明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知tanα=3,求$\frac{2}{3}$sin2α+$\frac{1}{4}$cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-x+b,其中a,b為常數(shù).討論函數(shù)f(x)在區(qū)間(a,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列函數(shù)中,是奇函數(shù)的是( 。
A.y=x2sin(x+$\frac{π}{3}$)B.y=x2cos$\frac{x}{3}$C.y=tan(x-$\frac{π}{3}$)D.y=x3tanx2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)在(0,$\frac{π}{2}$)上處處可導,若[f(x)-f′(x)]tanx-f(x)<0,則( 。
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(3x+φ)(A>0.x∈(-∞,+∞),0<φ<π)在x=$\frac{π}{12}$時取得最大值4..
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若f($\frac{2}{3}$α+$\frac{π}{12}$)=$\frac{12}{5}$.求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b8的值.

查看答案和解析>>

同步練習冊答案