A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
分析 由條件利用三角恒等變換化簡函數(shù)的解析式為f(x)=2sin(2x+φ+$\frac{π}{3}$),根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律及余弦函數(shù)的性質(zhì)可解得φ的值,求得函數(shù)g(x)的解析式為g(x)=cos(x+$\frac{π}{6}$),利用余弦函數(shù)值域求得函數(shù)g(x)的最值.
解答 解:∵f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ)=2sin(2x+φ+$\frac{π}{3}$),
∴將函數(shù)f(x)圖象向左平移$\frac{π}{4}$個(gè)單位后,得到函數(shù)解析式為:y=2sin[2(x+$\frac{π}{4}$)+φ+$\frac{π}{3}$]=2cos(2x+φ+$\frac{π}{3}$),
∵函數(shù)的圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)對(duì)稱,
∴對(duì)稱中心在函數(shù)圖象上,可得:2cos(2×$\frac{π}{2}$+φ+$\frac{π}{3}$)=2cos(π+φ+$\frac{π}{3}$)=0,解得:π+φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得:φ=kπ-$\frac{5π}{6}$,k∈Z,
∵0<φ<π,
∴解得:φ=$\frac{π}{6}$,
∴g(x)=cos(x+$\frac{π}{6}$),
∵x∈[-$\frac{π}{2}$,$\frac{π}{6}$],x+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{π}{3}$],
∴cos(x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1],則函數(shù)g(x)=cos(x+φ)在[-$\frac{π}{2}$,$\frac{π}{6}$]上的最小值是$\frac{1}{2}$.
故選:D.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換及化簡求值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的單調(diào)性、定義域、值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | nsinn-1x | B. | ncosn-1x | C. | cosnx | D. | nsinn-1x•cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{7}{3}$ | C. | $\frac{7}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,-1) | C. | (-∞,-3) | D. | (-3,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com