分析 根據(jù)題意得出P,Q兩點間的最短距離為直角△SOC斜邊SC上的高OM,求出即可.
解答 解:如圖所示,
四棱錐S-ABCD底面為正方形,邊長為$\sqrt{2}$,且SA=SB=SC=SD,高為SO=2,
P,Q兩點分別在線段BD,SC上,
則P,Q兩點間的最短距離為直角三角形SOC斜邊SC上的高OM;
所以O(shè)M=$\frac{OS•OC}{SC}$=$\frac{2×\frac{1}{2}\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{2})}^{2}}}{\sqrt{{2}^{2}{+1}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點評 本題考查了空間幾何體結(jié)構(gòu)特征的應(yīng)用問題,也考查了空間想象能力的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{1}{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\frac{1}{3}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時間分組 | 頻數(shù) |
[0,20) | 12 |
[20,40) | 20 |
[40,60) | 24 |
[60,80) | 26 |
[80,100) | 14 |
[100,120] | 4 |
非手機迷 | 手機迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
參考數(shù)據(jù) | P(k2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com