A. | (-∞,0) | B. | (-$\frac{1}{2}$,+∞) | C. | (-∞,-$\frac{1}{4}$) | D. | (-$\frac{1}{2}$,-$\frac{1}{4}$) |
分析 化圓的一般方程為標(biāo)準(zhǔn)方程,求出圓心坐標(biāo)和半徑,由圓心到直線的距離大于圓的半徑求得答案.
解答 解:由圓C:x2+y2-2y-2m=0,得x2+(y-1)2=2m+1,
∵直線l:x-y+2=0與圓C:x2+y2-2y-2m=0相離,
∴$\left\{\begin{array}{l}{2m+1>0}\\{\frac{|1×0-1×1+2|}{\sqrt{2}}>\sqrt{2m+1}}\end{array}\right.$,解得$-\frac{1}{2}<m<-\frac{1}{4}$.
∴實數(shù)m的取值范圍是$(-\frac{1}{2},-\frac{1}{4})$.
故選:D.
點評 本題考查直線與圓的位置關(guān)系的應(yīng)用,考查了點到直線距離公式,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,0] | C. | [0,$\sqrt{6}$] | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 5$\sqrt{2}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com