A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 易知a不變時(shí),函數(shù)f(x)的圖象的形狀不變,且四個(gè)不同的“近零點(diǎn)”的最小間距為3,對稱軸在區(qū)間中間時(shí)可取到a的最大值,從而解得.
解答 解:∵a不變時(shí),函數(shù)f(x)的圖象的形狀不變;
∴記f(x)=a(x-k)2+h,
四個(gè)不同的“近零點(diǎn)”的最小間距為3,
故易知對稱軸在區(qū)間中間時(shí)可取到a的最大值,
故不妨記f(x)=a(x-$\frac{1}{2}$)2+h,
故f(-1)-f(0)≤$\frac{1}{4}$×2,
即$\frac{9}{4}$a+h-($\frac{1}{4}$a+h)≤$\frac{1}{2}$,
故a≤$\frac{1}{4}$,
故選D.
點(diǎn)評 本題考查了學(xué)生對新定義的接受能力及二次函數(shù)的圖象的形狀應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com