16.已知直線x-ay=4在y軸上的截距是2,則a等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 直接把點(diǎn)(0,2)代入直線方程,求出a即可.

解答 解:已知直線x-ay=4在y軸上的截距是2,
即直線過(guò)(0,2),代入得:-2a=4,
則a=-2,
故選:C.

點(diǎn)評(píng) 本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)的特點(diǎn),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.要做一個(gè)容積為250πm3的無(wú)蓋圓柱體蓄水池,已知池底單位造價(jià)為池壁單位造價(jià)的兩倍,問(wèn)蓄水池的尺寸應(yīng)怎樣設(shè)計(jì)才能使總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于函數(shù)f(x),若存在x0∈Z,滿(mǎn)足|f(x0)|≤$\frac{1}{4}$,則稱(chēng)x0為函數(shù)f(x)的一個(gè)“近零點(diǎn)”.已知函數(shù)f(x)=ax2+bx+c(a>0)有四個(gè)不同的“近零點(diǎn)”,則a的最大值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ-6sinθ+8cosθ=0(ρ≥0).
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程:
(2)直錢(qián)l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t為參數(shù))過(guò)曲線C1與y軸負(fù)半軸的交點(diǎn),求直線l平行且與曲線C2相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+a|+|x-2|.
(Ⅰ)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=$\frac{x-4}{m{x}^{2}+4mx+3}$的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是(  )
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.[0,$\frac{3}{4}$]D.[0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知曲線C上每一點(diǎn)到點(diǎn)F(2,0)的距離與到直線x=-2的距離相等
(Ⅰ)求曲線C的方程
(Ⅱ)直線過(guò)點(diǎn)p(a,0)a>0,且與曲線C有兩個(gè)焦點(diǎn)A,B,O為坐標(biāo)原點(diǎn),求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某班全體學(xué)生參加一次測(cè)試,將所得分?jǐn)?shù)依次分組:[20,40),[40,60),[60,80),[80,100),繪制出如圖所示的成績(jī)頻率分布直方圖,若低于60分的人數(shù)是18,則該班的學(xué)生人數(shù)是(  )
A.50B.54C.60D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知圓錐的母線長(zhǎng)為20cm,則當(dāng)其體積最大時(shí),其側(cè)面積為(  )
A.$\frac{800\sqrt{6}π}{3}$cm2B.$\frac{400\sqrt{6}π}{3}$cm2C.$\frac{100\sqrt{6}π}{3}$cm2D.$\frac{200\sqrt{6}π}{3}$cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案