分析 (1)由3x2-2x-1≥0,解得x范圍即可得出函數(shù)的定義域;
(2)由$\left\{\begin{array}{l}{1-x≥0}\\{1+2x≥0}\end{array}\right.$,解得x范圍即可得出函數(shù)的定義域;
(3)由9-x>0,解得xx范圍即可得出函數(shù)的定義域.
解答 解:(1)由3x2-2x-1≥0,解得x≥1或$x≤-\frac{1}{3}$.
∴y=$\sqrt{3{x}^{2}-2x-1}$的定義域為{x|x≥1或$x≤-\frac{1}{3}$}.
(2)由$\left\{\begin{array}{l}{1-x≥0}\\{1+2x≥0}\end{array}\right.$,解得$-\frac{1}{2}≤x≤1$.
∴y=$\sqrt{1-x}$-$\sqrt{2x+1}$的定義域為{x|$-\frac{1}{2}≤x≤1$}.
(3)由9-x>0,解得x<9.
∴y=$\frac{7x}{\sqrt{9-x}}$的定義域為{x|x<9}.
點評 本題考查了函數(shù)的定義域的求法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{{\sqrt{3}}}{3})$ | B. | $(0,\frac{{\sqrt{3}}}{5})$ | C. | $(\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | D. | $(\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{3})$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com