11.等腰直角三角形的直角邊長(zhǎng)為1,則繞斜邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{{\sqrt{2}}}{6}π$.

分析 直角邊長(zhǎng)為1的等腰直角三角形,繞斜邊旋轉(zhuǎn)一周所形成的幾何體是兩個(gè)底面半徑為:$\frac{\sqrt{2}}{2}$,高也為$\frac{\sqrt{2}}{2}$的圓錐的組合體,代入圓錐體積公式,可得答案.

解答 解:直角邊長(zhǎng)為1的等腰直角三角形,
繞斜邊旋轉(zhuǎn)一周所形成的幾何體是兩個(gè)底面半徑為:$\frac{\sqrt{2}}{2}$,高也為$\frac{\sqrt{2}}{2}$的圓錐的組合體,
故該幾何體的體積V=2×[$\frac{1}{3}$×$π•(\frac{\sqrt{2}}{2})^{2}$]•$\frac{\sqrt{2}}{2}$=$\frac{{\sqrt{2}}}{6}π$.
故答案為:$\frac{{\sqrt{2}}}{6}π$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,圓錐的體積,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.NBA某籃球運(yùn)動(dòng)員在一個(gè)賽季的40場(chǎng)比賽中的得分的莖葉圖如圖所示,求中位數(shù)與眾數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)y=f(x)的定義域?yàn)閇1,2],則y=f(x+1)的定義域?yàn)閇0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.點(diǎn)(0,-1)到直線(xiàn)x+2y=3的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C與y軸相切,圓心C(1,-2)
(1)求圓C的方程
(2)是否存在斜率為1的直線(xiàn)l,使以l被圓C截得的弦AB為直徑的圓過(guò)原點(diǎn)?若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若關(guān)于實(shí)數(shù)x,y不等式組$\left\{{\begin{array}{l}{y≤2}\\{x-y-1≤0}\\{2x+y-2≥0}\end{array}}\right.$表示平面區(qū)域D.
(1)請(qǐng)?jiān)谥苯亲鴺?biāo)系下(用直尺)畫(huà)出平面區(qū)域D(陰影部分表示).
(2)①求目標(biāo)函數(shù)${z_1}=\frac{y+1}{x-1}$的取值范圍;②求目標(biāo)函數(shù)${z_2}=\sqrt{{{(x-2)}^2}+{y^2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1且AD=$\sqrt{2}$AA1=2.
(1)求證:直線(xiàn)C1D⊥平面ACD1;
(2)試求三棱錐A1-ACD1的體積.
(3)求A1C與平面ADD1A1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平行六面體ABCD-A1B1C1D1中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示向量$\overrightarrow{A{C}_{1}}$,$\overrightarrow{B{D}_{1}}$,$\overrightarrow{D{B}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若A={x|-3≤x<1},B={x|x-a≥0},且A⊆B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案