18.使不等式|x+1|≤4成立的一個(gè)必要不充分條件是(  )
A.2≤x≤3B.-6≤x≤3C.-5≤x≤3D.-6≤x≤2

分析 先求出不等式的解集,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:不等式|x+1|≤4,
即-4≤x+1≤4,即-5≤x≤3,
故“-6≤x≤3”是“-5≤x≤3”的一個(gè)必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,充分條件、必要條件、充要條件的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一場(chǎng)通過網(wǎng)絡(luò)發(fā)起的旨在倡導(dǎo)節(jié)約糧食的“光盤行動(dòng)”引起熱烈響應(yīng),1月23日,“光盤行動(dòng)”微博轉(zhuǎn)發(fā)超3000萬次,若每天以30%的增速轉(zhuǎn)發(fā),則至1月25日將突破(  )
A.3900萬次B.4800萬次C.5070萬次D.6591萬次

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.下列函數(shù)的定義域:
(1)y=log2(x+4)
(2)y=$\sqrt{lnx}$
(3)y=log3(5-2x)
(4)y=lg(x-3)
(5)y=$\frac{1}{1-lgx}$
(6)y=$\sqrt{lgx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2-x-3,
(1)求a的范圍,使y=f(x)在[-2,2]上不具單調(diào)性;
(2)當(dāng)$a=\frac{1}{2}$時(shí),函數(shù)f(x)在閉區(qū)間[t,t+1]上的最大值記為g(t),求g(t)的函數(shù)表達(dá)式;
(3)第(2)題的函數(shù)g(t)是否有最值,若有,請(qǐng)求出;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+|x+1-2a|,其中a是實(shí)數(shù).
(Ⅰ)判斷f(x)的奇偶性,并說明理由;
(Ⅱ)當(dāng)x∈[-1,1]時(shí),f(x)的最小值為$\frac{1}{2}{a^2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.,當(dāng)每輛車的月租金定為x元時(shí),租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.若將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長度后,所得圖象關(guān)于y軸對(duì)稱.則函數(shù)f(x)的解析式為(  )
A.f(x)=2sin(x+$\frac{π}{6}$)B.f(x)=2sin(x+$\frac{π}{3}$)C.f(x)=2sin(2x+$\frac{π}{6}$)D.f(x)=2sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{xn}為等差數(shù)列,且x1+x2+x3=5,x18+x19+x20=25,則數(shù)列{xn}的前20項(xiàng)的和為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的方程${({\frac{3}{2}})^x}=\frac{2+3a}{5-a}$有非負(fù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案