分析 利用正弦定理把題設等式中的角的正弦轉換成邊的關系,代入余弦定理中求得cosB的值,進而求得sinB,結合bc=4,利用三角形面積公式即可得解.
解答 解:∵asinA=bsinB+(c-b)sinC,
∴由正弦定理得a2=b2+c2-bc,即:b2+c2-a2=bc,
∴由余弦定理可得b2=a2+c2-2accosB,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,A=60°.可得:sinA=$\frac{\sqrt{3}}{2}$,
∵bc=4,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$
點評 本題主要考查了解三角形問題.考查了對正弦定理和余弦定理的靈活運用,考查了三角形面積公式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x3+3x2 | B. | y=$\frac{{e}^{x}+{e}^{-x}}{2}$ | C. | y=xsinx | D. | y=log2$\frac{3-x}{3+x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com