【題目】在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù))。在以坐標原點為極點軸正半軸為極軸的極坐標系中,曲線。

(1)寫出曲線,的普通方程

(2)過曲線的左焦點且傾斜角為的直線交曲線兩點,。

【答案】(1) ;(2) .

【解析】分析:(1)將曲線中的參數(shù)消去可得曲線的普通方程,根據(jù)極坐標與直角坐標間的變換公式消去中的可得的直角坐標方程.(2)由條件求出直線的參數(shù)方程為為參數(shù)),將其代入曲線的普通方程后根據(jù)參數(shù)的幾何意義求解.

詳解:(1)將參數(shù)方程(為參數(shù))中的參數(shù)消去,

,

,

∴曲線的普通方程為

,,代入,

,

∴曲線的直角坐標方程為.

(2)由題意知曲線左焦點為,直線的傾斜角為,

∴直線的參數(shù)方程為為參數(shù)),

將直線的參數(shù)方程代入整理可得

,

其中.

設(shè)點對應的參數(shù)分別為,

,.

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某商品的進價為每件元,售價為每件元,每個月可賣出件;如果每件商品在該售價的基礎(chǔ)上每上漲元,則每個月少賣件(每件售價不能高于元).設(shè)每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.

(1)求的函數(shù)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠家具車間做AB型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張AB型桌子分別需要1小時和2小時,漆工油漆一張AB型桌子分別需要3小時和1小時;又知木工和漆工每天工作分別不得超過8小時和9小時,設(shè)該廠每天做A,B型桌子分別為x張和y張.

1)試列出x,y滿足的關(guān)系式,并畫出相應的平面區(qū)域;

2)若工廠做一張A,B型桌子分別獲得利潤為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.

)求證:EF⊥平面PAC;

)若MPD的中點,求證:ME∥平面PAB

)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)(1)的結(jié)論下,若關(guān)于的不等式時恒成立,的值;

(3)令,若關(guān)于的方程內(nèi)至少有兩個解,求出實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高一新生對文理科的選擇,對1 000名高一新生發(fā)放文理科選擇調(diào)查表,統(tǒng)計知,有600名學生選擇理科,400名學生選擇文科.分別從選擇理科和文科的學生隨機各抽取20名學生的數(shù)學成績得如下累計表:

分數(shù)段

理科人數(shù)

文科人數(shù)

(1)從統(tǒng)計表分析,比較選擇文理科學生的數(shù)學平均分及學生選擇文理科的情況,并繪制理科數(shù)學成績的頻率分布直方圖.

(2)根據(jù)你繪制的頻率分布直方圖,估計意向選擇理科的學生的數(shù)學成績的中位數(shù)與平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作拋物線的兩條切線,切點分別為,,,分別交軸于,兩點,為坐標原點,則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱錐中,E,F分別為棱VA,VC的中點.

(1)求證:EF平面ABCD;

(2)求證:平面VBD平面BEF

查看答案和解析>>

同步練習冊答案