10.已知在△ABC中,重心為P,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-16,BC=10,則|$\overrightarrow{AP}$|等于( 。
A.5B.6C.4D.2

分析 由($\overrightarrow{AC}-\overrightarrow{AB}$)2=|$\overrightarrow{BC}$|2=100和$\overrightarrow{AB}$•$\overrightarrow{AC}$=-16可得${\overrightarrow{AC}}^{2}$+${\overrightarrow{AB}}^{2}$=68,于是($\overrightarrow{AB}+\overrightarrow{AC}$)2=${\overrightarrow{AC}}^{2}$+${\overrightarrow{AB}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AC}$=36,作出平行四邊形ABDC,則AD=6,根據(jù)重心的性質(zhì)可得AP=2.

解答 解:∵|$\overrightarrow{AC}-\overrightarrow{AB}$|=|$\overrightarrow{BC}$|,∴($\overrightarrow{AC}-\overrightarrow{AB}$)2=|$\overrightarrow{BC}$|2=100,即${\overrightarrow{AC}}^{2}$+${\overrightarrow{AB}}^{2}$-2$\overrightarrow{AB}•\overrightarrow{AC}$=100,∴${\overrightarrow{AC}}^{2}$+${\overrightarrow{AB}}^{2}$=100+2$\overrightarrow{AB}$•$\overrightarrow{AC}$=68.
∴($\overrightarrow{AB}+\overrightarrow{AC}$)2=${\overrightarrow{AC}}^{2}$+${\overrightarrow{AB}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AC}$=68-32=36,∴|$\overrightarrow{AB}+\overrightarrow{AC}$|=6,
以AB,AC為鄰邊作平行四邊形ABDC,則AD=|$\overrightarrow{AB}+\overrightarrow{AC}$|=6.
∵P是△ABC的重心,∴AP=$\frac{1}{3}$AD=2.
故選D.

點評 本題考查了平面向量的數(shù)量積運算,向量加減法的幾何意義,重心的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若α∈(0,π),sinα+cosα=$\frac{1}{2}$,求tanα的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知m∈R,命題p:方程$\frac{x^2}{m+1}+\frac{y^2}{m-1}=1$表示雙曲線,命題q:?x∈R,x2+mx+m<0.
(1)若命題q為真命題,求m取值范圍;
(2)若命題p∧q為真命題,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.記$\underset{\stackrel{n}{U}}{k-1}$Ak=A1∪A2∪A3∪…∪An,n∈N,設(shè)集合Ak={y|y=$\frac{kx+1}{\sqrt{kx}}$•$\frac{1}{k}$≤x≤1,k-2,3,…,2015},則$\underset{\stackrel{2015}{U}}{k-2}$Ak=(  )
A.B.{2,$\frac{3\sqrt{2}}{2}$}C.{2}D.[2,$\frac{2016\sqrt{2015}}{2015}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)若x∈[0,2π].求函數(shù)y=$\sqrt{\frac{\sqrt{3}}{2}-sinx}$的定義域;
(2)求函數(shù)y=$\sqrt{2-|x-4|}$+lg(-sinx)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{2}^{x}}{{4}^{x}+a}$
(1)若a=1,試證明函數(shù)f(x)為偶函數(shù)且在(-∞,0)上為增函數(shù);
(2)若函數(shù)f(x)為奇函數(shù),求a的值,并判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用籬笆圍一個面積為100m2的矩形菜園,則所用籬笆長度最短為40m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線${x^2}-\frac{y^2}{a}=1$的一條漸近線與直線x-2y+3=0平行,則離心率e=$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點E在直角三角形ABC的斜邊AB上,四邊形CDEF為正方形,已知正方形CDEF的面積等于36.設(shè)∠CAB=θ,直角三角形ABC的周長L=12+$\frac{a(b+sinθ+cosθ)}{sinθcosθ}$.
(Ⅰ)求a,b的值;
(Ⅱ)求L的最小值.

查看答案和解析>>

同步練習(xí)冊答案