2.已知圓O上三個(gè)不同點(diǎn)A,B,C,若$\overrightarrow{CO}=\overrightarrow{CA}•{sin^2}θ+\overrightarrow{CB}•{cos^2}θ$,則∠ACB=$\frac{π}{2}$.

分析 由題意,向量式右邊兩個(gè)系數(shù)之和為1,所以A、B、O三點(diǎn)共線,即可得出結(jié)論.

解答 解:由題意,向量式右邊兩個(gè)系數(shù)之和為1,所以A、B、O三點(diǎn)共線,
所以∠ACB=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題考查向量共線定理的運(yùn)用,考查學(xué)生的計(jì)算能力,確定A、B、O三點(diǎn)共線是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(理科)如圖,A,B,C,D在y=$\frac{1}{4}$x2上,A、D關(guān)于拋物線對(duì)稱軸對(duì)稱,過點(diǎn)D(x0,y0)作拋物線切線,可證切線斜率為$\frac{1}{2}$x0,BC∥切線,點(diǎn)D到AB,AC距離分別為d1,d2,d1+d2=$\sqrt{2}$|AD|
①試問:△ABC是銳角,鈍角還是直角三角形?請(qǐng)說明判斷的理由.
②若△ABC的面積為240,求A點(diǎn)的坐標(biāo)和BC直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}首項(xiàng)a1=1,an=2an-1+1(n∈N*且n≥2),其通項(xiàng)公式為${a_n}={2^n}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=$\sqrt{m{x^2}+6mx+m+8}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍是(  )
A.[0,1]B.(0,1)C.(0,2)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},}&{x≤0}\\{f(2x-2)}&{0<x≤\frac{3}{2}}\end{array}\right.$,若方程f(x)=x+a有且只有三個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.[0,1)B.[1,2)C.[1,3)D.[0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,并且滿足a2+a3+a4=28,a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={y|y=x2-$\frac{3}{2}$x+1,x∈[0.5,2]},B={x|x+m2≥1}.命題p:x∈A,命題q:x∈B,且命題p是命題q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列敘述中正確命題的個(gè)數(shù)是2.
①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;
③垂直于同一直線的兩個(gè)平面相互平行;④若兩個(gè)平面垂直,那么垂直于其中一個(gè)平面的直線與另一個(gè)平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}滿足a1=1,$\frac{{a}_{n}+1}{n+1}$=$\frac{{a}_{n}}{n}$+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3n•$\sqrt{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案