分析 由已知及正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}}{2}$,根據(jù)大邊對大角由b<a可得B∈(0,60°),即可求B的值.
解答 解:△ABC中,∵$a=3,A=60°,b=\sqrt{6}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{2}}{2}$,
∵b<a,
∴B∈(0,60°),
∴B=45°.
故答案為:45°.
點評 本題主要考查了正弦定理,大邊對大角等知識在解三角形中的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 26 | C. | $\frac{{2}^{6}+1}{2}$ | D. | $\frac{{2}^{6}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com