12.一物體沿直線以速度v運(yùn)動(dòng),且v(t)=2t-3(t的單位為:秒,v的單位為:米/秒),則該物體從時(shí)刻t=0秒至?xí)r刻t=$\frac{3}{2}$秒間運(yùn)動(dòng)的路程為$\frac{9}{4}$.

分析 由題意可得:S=-${∫}_{0}^{\frac{3}{2}}(2t-3)dt$,即可得出.

解答 解:S=-${∫}_{0}^{\frac{3}{2}}(2t-3)dt$=-$({t}^{2}-3t){|}_{0}^{\frac{3}{2}}$=$\frac{9}{4}$.
故答案為:$\frac{9}{4}$.

點(diǎn)評 本題考查了微積分基本定理的應(yīng)用、圓的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=a+xln(x+1)(a∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=0處的切線方程;
(2)已知x1∈(-1,0),x2∈(0,+∞),且x1,x2是函數(shù)F(x)=$\frac{f(x)}{x}$的兩個(gè)極值點(diǎn),試證明:?m∈(-1,0),n∈(0,+∞),都有F(m)<F(n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)解不等式|x+1|+2|x-1|<3x+5
(2)已知a,b∈[0,1],求ab+(1-a-b)(a+b)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長為$\frac{1}{2}$,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{20}{3}$B.$\frac{25}{3}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=1,x+x-1=3;
(2)若(1)中條件不變,求x2+x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l:y=$\frac{{\sqrt{3}}}{3}$x+2$\sqrt{3}$與圓x2+y2=12交于A,B兩點(diǎn),過A,B分別作l的垂線與x軸交于C,D兩點(diǎn),則|CD|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一物體的運(yùn)動(dòng)方程是S=-$\frac{1}{2}$at2(a為常數(shù)),則該物體在t=t0時(shí)刻的瞬時(shí)速度為( 。
A.at0B.-at0C.$\frac{1}{2}$at0D.2at0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,AB=9,BD=6,CD⊥AB,那么$\overrightarrow{AC}$•$\overrightarrow{AB}$=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{3}{1+i}$,則z的虛部為(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{3}{2}$iD.-3

查看答案和解析>>

同步練習(xí)冊答案