分析 由橢圓性質(zhì)得$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{5}}{5}}\\{b=2}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,由此能求出橢圓的方程.
解答 解:∵橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{5}}}{5}$,其中一個頂點坐標(biāo)為 (0,2),
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{5}}{5}}\\{b=2}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{5}$,b=2,c=1,
∴橢圓方程為$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.
故答案為:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.
點評 本題考查橢圓方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | (0,$\frac{\sqrt{5}}{5}$) | D. | (0,$\frac{\sqrt{6}}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{π}{2}$) | B. | ($\frac{π}{2},\frac{2π}{3}$) | C. | ($π,\frac{7π}{6}$) | D. | ($\frac{4π}{3},\frac{7π}{6}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com